25 Feb, 2016
$\abs{z}$ p-values: $P(H_0\v x)$
n | 1.96 (.05) | 2.576 (.01) |
1 | .35 | .21 |
10 | .37 | .24 |
100 | .60 | .27 |
1000 | .8 | .53 |
For models $M_1,…,M_M$
\[P(M_i\v x) = \displaystyle \frac{p(x\v M_i)P(M_i)}{\sum_{j=1}^m p(x\v M_j)P(M_j)}\]where $p(x\v M_i) = \int~p(x\v\theta_i;M_i)\pi(\theta_i\v M_i) ~d\theta_i$
Issues with Bayes Factors
Other Model Selection Criteria
AIC tends to overestimate number of parameters, BIC tends to underestimate the number of parameters. One challenge in computing AIC and BIC is that the number of parameters is not easy to count in hierarchical settings.