23 Feb, 2016
$H_0: \theta \in \Theta_0$ vs. $H_1: \theta \in \Theta_1$
$H_0$ is True | $H_0$ is False | |
Reject $H_0$ | Type I error | Correct |
Fail to Reject $H_0$ | Correct | Type II error |
for $\delta = {0,1}$.
Risk:
The posterior odds ratio is given by
\[\frac{p(\Theta_0|x)}{p(\Theta_1|x)} = \frac{p(x|H_0)}{p(x|H_1)} \frac{p(H_0)}{p(H_1)}\]The factor $B_{01} = \frac{p(x\v H_0)}{p(x \v H_1)}$ updates the prior odds ratio to the posterior odds ratio. This is known as the Bayes Factor in favr of $H_0$.
When $H_0$ and $H_1$ are both simple hypotheses, the BF corresponds to the likelihood ratio $B_{01}=\frac{p(x\v\theta_0)}{p(x\v\theta_1)}$. In general, if $g_i(\theta)$ is the prior for $\theta$ under $H_i$, then
\[B_{01} = \frac{\int_{\Theta_0}~p(x|\theta)g_0(\theta)~d\theta}{\int_{\Theta_1}~p(x|\theta)g_1(\theta)~d\theta} = \frac{m_0(x)}{m_1(x)}\]$\log_{10} BF(H_1,H_0)$ | $BF(H_1,H_0)$ | Evidence against $H_0$ |
---|---|---|
0-.5 | 1-3.2 | Not work more that mentioning |
.5-1 | 3.2-10 | Substantial |
1-2 | 10-100 | strong |
$> 2$ | $> 100$ | Decisive |
Bayes factors cannot be reconciled with the p-values in two-sided tests.
$B_{ij}(x) = \frac{m_i(x)}{m_j(x)}$, $p(M_k|x) = \p{\sum_{i=1}^m \frac{p(M_i)}{p(M_k)}B_{jk}}^{-1}$, $m_k(x) = \int_{\Theta_k}~p_k(x\v\theta_k)p_k(\theta_k)~d\theta_k$
If the priors $p_k(\theta_k)$ are defined up to a proportionality constant $c_k$, then the BF will depend on the ratio of such constants. If the priors are proper densities, then we have
\[c_k^{-1} = \int_{\Theta_k} p_k(\theta_k)d\theta_k\]and then the BF is uniquely defined. For improper priors, not defined.