29 Jan, 2016

Jeffreys Prior (included in midterm 1)


Jeffreys prior is

\[\pi(\theta) = [I(\theta)]^{1/2}\]

where $I(\theta)$ is the expected

Fisher’s information

\[I(\theta) = -E\brak{\frac{d^2}{d\theta^2}\log p(x|\theta)}\]

Multidimensional case:

\[\begin{aligned} \theta &= (\theta_1,...,\theta_p)' \\\\ \pi(\theta) &= [det(I(\theta))]^{1/2} \\\\ I_{ij}(\theta) &= -E\brak{\frac{d^2}{d\theta_i d\theta_j}\log p(x|\theta)} \end{aligned}\]

$I(\theta)$ for model $x_i \sim \text{Binomial}(n,\theta)$ is $\frac{n^2}{\theta(1-\theta)}$. So, $\pi_J(\theta) \propto \theta^{-1/2}(1-\theta)^{-1/2}$. i.e. $\theta \sim Beta(1/2,1/2)$.

\[\begin{aligned} \theta &\sim Unif(0,1) \\\\ \theta &\sim Beta(1/2,1/2)(J) \\\\ \end{aligned}\]

Invariance and Jeffreys Prior

Take $\phi = h(\theta)$, where $h$ is a one-to-one transformation

  1. Find Jeffreys prior for $\theta$, $\pi_J(\theta)$, transform it to obtain $\pi^*(\phi)$.
  2. Find Jeffreys prior for $\phi$, $\pi_J(\theta) = \pi^*(\phi)$
\[\begin{aligned} \theta &= g(\phi)\\\\ I(\phi) &= -E\left[\frac{d^2}{d\phi^2}\log p(x|g(\phi))\right] \\\\ &= I(\theta) \paren{\frac{d\theta}{d\phi}}^2 \\\\ \Rightarrow \pi_J(\phi) &= \paren{I(\phi)}^{1/2} \\\\ &= \pi_J(\theta) \abs{\frac{d\theta}{d\phi}}\\\\ \end{aligned}\]

Therefore, $\pi_J(\theta)=\pi^*(\phi)$ and Jeffreys prior is invariant.

  • Goods:
    • automatic
    • invariant
  • Bads:
    • Possibly Improper
    • don’t satisfy likelihood principle
    • possibly non-admissible estimators

Jeffreys Prior are generally not conjugate. But can be seen as limiting distributions of conjugate priors. e.g.

\[\begin{aligned} x|\theta &\sim N(\theta,1) \\\\ \theta &\sim N(\mu,\tau^2)\end{aligned}\]

As $\tau^2$ goes to infinity, we get the jeffreys prior. $\pi_J(\theta) \propto 1$.

As an excercise, show that $\pi_J(\theta) \propto 1$ for the Normal likelihood. Then show the limiting distribution of the prior above is the jeffreys prior.

Jeffreys prior for $x \sim N(\mu,\sigma^2)$ is $\pi(\mu,\sigma) \propto \frac{1}{\sigma^2}$.

Jeffreys suggested $\pi(\mu,\sigma) = \pi_J(\mu)\pi_J(\sigma) \propto 1 \times \frac{1}{\sigma} \Rightarrow \pi(\mu,\sigma^2) \propto \frac{1}{\sigma^2}$

Note that an Inverse-Gamma prior with parameters $(a=2,b=\infty)$ is $\frac{b^2}{\Gamma(a)} \paren{\frac{1}{\sigma^2}}^{a-1} e^{-\frac{1}{\sigma^2 b}}$ $\propto \frac{1}{\sigma^2} \Rightarrow $ infinite mean ($\frac{b}{a-1}$) and infinite variance ($\frac{b^2}{(a-1)^2(a-2)}$).

  1. Jeffreys prior and the likelihood principle. $x \sim Bin(n,\theta)$.
  2. $y \sim \text{Neg-Bin}(s,\theta)$

J prior in case 1 is Beta(.5,.5), J prior in case 2 is Beta(0,.5). The same likelihood but different J priors. So it does not satisfy the likelihood principle.