29 Jan, 2016
Jeffreys prior is
\[\pi(\theta) = [I(\theta)]^{1/2}\]where $I(\theta)$ is the expected
Fisher’s information
\[I(\theta) = -E\brak{\frac{d^2}{d\theta^2}\log p(x|\theta)}\]Multidimensional case:
\[\begin{aligned} \theta &= (\theta_1,...,\theta_p)' \\\\ \pi(\theta) &= [det(I(\theta))]^{1/2} \\\\ I_{ij}(\theta) &= -E\brak{\frac{d^2}{d\theta_i d\theta_j}\log p(x|\theta)} \end{aligned}\]$I(\theta)$ for model $x_i \sim \text{Binomial}(n,\theta)$ is $\frac{n^2}{\theta(1-\theta)}$. So, $\pi_J(\theta) \propto \theta^{-1/2}(1-\theta)^{-1/2}$. i.e. $\theta \sim Beta(1/2,1/2)$.
\[\begin{aligned} \theta &\sim Unif(0,1) \\\\ \theta &\sim Beta(1/2,1/2)(J) \\\\ \end{aligned}\]Take $\phi = h(\theta)$, where $h$ is a one-to-one transformation
Therefore, $\pi_J(\theta)=\pi^*(\phi)$ and Jeffreys prior is invariant.
Jeffreys Prior are generally not conjugate. But can be seen as limiting distributions of conjugate priors. e.g.
\[\begin{aligned} x|\theta &\sim N(\theta,1) \\\\ \theta &\sim N(\mu,\tau^2)\end{aligned}\]As $\tau^2$ goes to infinity, we get the jeffreys prior. $\pi_J(\theta) \propto 1$.
As an excercise, show that $\pi_J(\theta) \propto 1$ for the Normal likelihood. Then show the limiting distribution of the prior above is the jeffreys prior.
Jeffreys prior for $x \sim N(\mu,\sigma^2)$ is $\pi(\mu,\sigma) \propto \frac{1}{\sigma^2}$.
Jeffreys suggested $\pi(\mu,\sigma) = \pi_J(\mu)\pi_J(\sigma) \propto 1 \times \frac{1}{\sigma} \Rightarrow \pi(\mu,\sigma^2) \propto \frac{1}{\sigma^2}$
Note that an Inverse-Gamma prior with parameters $(a=2,b=\infty)$ is $\frac{b^2}{\Gamma(a)} \paren{\frac{1}{\sigma^2}}^{a-1} e^{-\frac{1}{\sigma^2 b}}$ $\propto \frac{1}{\sigma^2} \Rightarrow $ infinite mean ($\frac{b}{a-1}$) and infinite variance ($\frac{b^2}{(a-1)^2(a-2)}$).
J prior in case 1 is Beta(.5,.5), J prior in case 2 is Beta(0,.5). The same likelihood but different J priors. So it does not satisfy the likelihood principle.