3 Feb, 2016
where $P$ is a diagonal matrix, and use spike and slab prior on the diagonal elements of $P$.
For the model,
\[\begin{aligned} y &= X\beta + \epsilon, \epsilon \sim N(0,\sigma^2) \\ \beta &\sim \pi \end{aligned}\]say the true model is $y = X\beta^0 + \epsilon$. Then,
\[\pi(\beta \in U| y) = \frac{\int_U~f(y|\beta)~\pi(\beta)~d\beta}{\int~f(y|\beta)~\pi(\beta)~d\beta} = \frac{\int_U~\frac{f(y|\beta)}{f(y|\beta^0)}~\pi(\beta)~d\beta}{\int~\frac{f(y|\beta)}{f(y|\beta^0)}~\pi(\beta)~d\beta}\]Let $U$ be a neighborhood of $\beta$ around $\beta^0$. A model is posterior consistent if $\pi(\beta \in U|y) \rightarrow 1$ as $n\rightarrow\infty$ under $\beta^0$ for any nbd U.
L2 distance $\norm{\beta-\beta^0}$
Let $B_\epsilon = \{ \beta: \norm{\beta-\beta^0}_2 \lt \epsilon \}$. Let us show $\pi(B_\epsilon|y) \rightarrow 1$ as $n\rightarrow\infty$.
\[\pi(B_\epsilon| y) = \frac{\int_{B_\epsilon}~\frac{f(y|\beta)}{f(y|\beta^0)}~\pi(\beta)~d\beta}{\int_{\mathbb{R}^p}~\frac{f(y|\beta)}{f(y|\beta^0)}~\pi(\beta)~d\beta}\]Let $\{\Phi\}^\infty_{n=1}$ be a sequence of test functions for testing $H_0:\beta=\beta^0$ vs. $H_1: \beta \in B_\epsilon^C$.
\[E_{\beta^0}(\Phi_n) \le c_1 \exp\paren{-cn}, ~~~ c, b \gt 0\]and $\underset{\beta\in B_\epsilon^C}{Sup}~E_\beta\paren{1-\phi_n} \le b_1 \exp\paren{-bn}$.
The level of the sequence of tests goes to 0 as $n$ goes to infinity in an exponential rate and power function of the sequence of tests goes to 1 as $n$ goes to infinity in an exponential rate.
\[\begin{aligned} \pi(B_\epsilon | y) &= \frac{\int_{B_\epsilon}~\frac{f(y|\beta)}{f(y|\beta^0)}~\pi(\beta)~d\beta}{\int_{\mathbb{R}^p}~\frac{f(y|\beta)}{f(y|\beta^0)}~\pi(\beta)~d\beta} \\ &= \frac{J_{B_\epsilon}}{J} \\ & \le \Phi_n + \frac{(1-\Phi_n)J_{B_\epsilon}}{J} \end{aligned}\] \[\begin{aligned} P_{\beta^0} (\Phi_n \gt \exp\paren{-cn/2}) &\le \frac{E_{\beta_0}(\Phi_n)}{\exp\paren{-cn/2}} \\\\ &=c_1 \exp\paren{\frac{-cn}{2}} \end{aligned}\]$\sum_{n=1}^\infty P_{\beta^0} (\Phi_n \gt \exp\paren{-cn/2}) \le \sum_{n=1}^\infty c_1 \exp\paren{\frac{-cn}{2}} \lt \infty$ $ \Rightarrow P_{\beta^0} (\Phi_n \gt \exp\paren{-cn/2 \text{ infinitely often}}) = 0.$ So, for all but finite number of $n$’s, $\Phi_n$ goes to 0. (Using Chebychev’s then Borel Cantelli)
$\Phi_n = I_{\{ \norm{\hat{\beta_n}-\beta^0} \gt \epsilon/2 \}}$, $\hat\beta = (X’X)^{-1}X’y$
$\brac{\Phi_n}$ is an exponentially consistent sequence of test functions for testing $H_0:\beta=\beta_0$ vs $H_1:\beta \in B^C$.