## Advanced Simulation - Lecture 13

Rémi Bardenet

6 March 2014

# Last 4 lectures: Sequential Monte Carlo methods

- Infer  $\theta$  by incorporating data sequentially.
  - SMC sampler for static data

▶ Generalize to infer hidden states in an HMM.

▶ Use SMC as a proposal in MH.

▶ Let data be  $y_{1:T} = y_1, ..., y_T$ , and the posterior

$$\pi(\theta) = p(\theta|y_{1:T}) \propto p(y_{1:T}|\theta)p(\theta).$$

- ▶ What do you remember of IS?
- ▶ During this lecture, our running example will be probit classification

$$y|x, \beta \sim \mathsf{Bernoulli}(\Phi(\beta x))$$

where  $\Phi$  is the cdf of  $\mathcal{N}(0,1)$ .

# Sequential importance sampling

Define  $\pi_0(\theta) = p(\theta)$  and

$$\pi_t(\theta) = p(\theta|y_{1:t}) \text{ for } 1 \leq t \leq T.$$

Assume you have  $\theta_t^1, \dots, \theta_t^N \sim \pi_t$  iid, then

$$\pi_{t+p} \approx \frac{1}{N} \sum_{i=1}^{N} \frac{\pi_{t+p}(\theta_i^i)}{\pi_t(\theta_i^i)} \delta_{\theta_t^i}$$

But

$$\frac{\pi_{t+\rho}(\theta_t^i)}{\pi_t(\theta_t^i)} \propto \frac{p(y_{1:t+\rho}|\theta_t^i)}{p(y_{1:t}|\theta_t^i)} = p(y_{t+1:t+\rho}|y_{1:t},\theta_t^i) =: w_{t+\rho}^i$$

Finally,

$$\pi_{t+
ho}pprox rac{1}{\sum_{i=1}^N w_{t+
ho}^i} \sum_{i=1}^N w_{t+
ho}^i \delta_{ heta_t^i}.$$

If data is assumed iid given  $\theta$ , then  $w_{t+p}^i$  is simply  $\prod_{i=1}^p p(y_{t+i}|\theta_t^i)$ .

?

- ▶ Sample  $\theta_0^1, \ldots, \theta_0^N \sim \pi_0$  iid and set  $w_0^i = 1/N$  for all i.
- For  $1 \le t \le T$ ,

• Set 
$$w_t^i \propto w_{t-1}^i p(y_t|y_{1:t-1},\theta_t^i)$$
.

- Set  $\theta_t^i = \theta_{t-1}^i$ .
- ▶ Return  $\hat{\pi}_T = \frac{1}{\sum_{j=1}^N w_T^i} \sum_{i=1}^N w_T^i \delta_{\theta_T^i}$

# Have you seen this algorithm before?

#### Importance sampling

- ▶ Sample  $\theta_0^1, \dots, \theta_0^N \sim \pi_0$  iid and set  $w_0^i = 1/N$  for all i.
- ▶ For 1 < t < T,
  - Set  $w_t^i \propto w_{t-1}^i p(y_t | y_{1:t-1}, \theta_t^i)$ .
  - $\bullet \ \operatorname{Set} \, \theta^i_t = \theta^i_{t-1}.$
- ▶ Return  $\hat{\pi}_T = \frac{1}{\sum_{j=1}^N w_T^i} \sum_{i=1}^N w_T^i \delta_{\theta_T^i}$

- We are doing simple batch importance sampling!
- ▶ Most weights are going to zero as *t* grows:
  - useless storage
  - high variance estimators

- ► *T* = 100 samples,
- ▶ *N* = 100 particles.

# Histogram of w

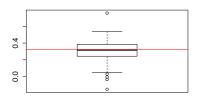


Figure: Left: example set of weights. Right: estimates of the posterior mean for 100 repetitions.

#### IS with systematic resampling

- ▶ Sample  $\theta_0^1, \ldots, \theta_0^N \sim \pi_0$  iid and set  $w_0^i = 1/N$  for all i.
- ▶ For  $1 \le t \le T$ ,
  - Set  $w_t^i \propto w_{t-1}^i p(y_t | y_{1:t-1}, \theta_t^i)$ .
  - Set  $\theta_t^i = \theta_{t-1}^i$ . • "Resample"

$$\theta_t^1, \dots, \theta_t^N \sim \frac{1}{\sum_{i=1}^N w_t^i} \sum_{i=1}^N w_t^i \delta_{\theta_t^i}$$
 iid

and reset  $w_t^i = 1/N$  for all i

▶ Return  $\hat{\pi}_T = \frac{1}{\sum_{i=1}^N w_T^i} \sum_{i=1}^N w_T^i \theta_T^i$ 

#### IS with systematic resampling

- ▶ Sample  $\theta_0^1, \dots, \theta_0^N \sim \pi_0$  iid and set  $w_0^i = 1/N$  for all i.
- ▶ For  $1 \le t \le T$ ,
  - Set  $w_t^i \propto w_{t-1}^i p(y_t|y_{1:t-1}, \theta_t^i)$ .
  - Set  $\theta_t^i = \theta_{t-1}^i$ .
  - "Resample"

$$heta_t^1,\dots, heta_t^N \sim rac{1}{\sum_{i=1}^N w_t^i} \sum_{i=1}^N w_t^i \delta_{ heta_t^i}$$
 iid

and reset  $w_t^i = 1/N$  for all i

▶ Return  $\hat{\pi}_T = \frac{1}{\sum_{i=1}^N w_T^i} \sum_{i=1}^N w_T^i \theta_T^i$ 

- even higher variance as only a few particles will survive.
- ▶ If the support of the target moves with *t*, particles could even end up out of the support!

- ightharpoonup T = 100 samples,
- ▶ *N* = 100 particles.

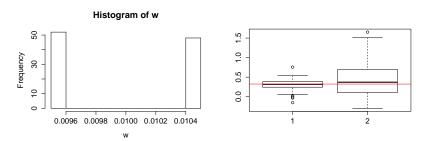


Figure: Left: example set of weights. Right: estimates of the posterior mean for 100 repetitions.

#### IS with occasional resampling

- ▶ Sample  $\theta_0^1, \dots, \theta_0^N \sim \pi_0$  iid and set  $w_0^i = 1/N$  for all i.
- ▶ For  $1 \le t \le T$ ,
  - Set  $w_t^i \propto w_{t-1}^i p(y_t|y_{1:t-1},\theta_t^i)$ .
  - $\bullet \ \operatorname{Set} \, \theta^i_t = \theta^i_{t-1}.$
  - If most weights  $w_t^i$  are zero, then

$$heta_t^1,\dots, heta_t^N \sim rac{1}{\sum_{i=1}^N w_t^i} \sum_{i=1}^N w_t^i \delta_{ heta_t^i}$$
 iid

and reset  $w_t^i = 1/N$  for all i

▶ Return  $\hat{\pi}_T = \frac{1}{\sum_{i=1}^N w_T^i} \sum_{i=1}^N w_T^i \theta_T^i$ 

#### IS with occasional resampling

- ▶ Sample  $\theta_0^1, \dots, \theta_0^N \sim \pi_0$  iid and set  $w_0^i = 1/N$  for all i.
- ▶ For  $1 \le t \le T$ ,
  - Set  $w_t^i \propto w_{t-1}^i p(y_t|y_{1:t-1}, \theta_t^i)$ .
  - $\bullet \ \operatorname{Set} \, \theta^i_t = \theta^i_{t-1}.$
  - Compute  $ESS_t = \left(\sum_{i=1}^N (w_t^i)^2\right)^{-1}$ .
  - If  $ESS_t < N/2$ , then

$$\theta_t^1, \dots, \theta_t^N \sim \frac{1}{\sum_{i=1}^N w_t^i} \sum_{i=1}^N w_t^i \delta_{\theta_t^i} \text{ iid}$$

and reset  $w_t^i = 1/N$  for all i

• Return  $\hat{\pi}_T = \frac{1}{\sum_{i=1}^N w_T^i} \sum_{i=1}^N w_T^i \theta_T^i$ 

#### IS with occasional resampling

- ▶ Sample  $\theta_0^1, \dots, \theta_0^N \sim \pi_0$  iid and set  $w_0^i = 1/N$  for all i.
- ▶ For  $1 \le t \le T$ ,
  - Set  $w_t^i \propto w_{t-1}^i p(y_t|y_{1:t-1}, \theta_t^i)$ .
  - $\bullet \ \operatorname{Set} \, \theta^i_t = \theta^i_{t-1}.$
  - Compute  $ESS_t = \left(\sum_{i=1}^N (w_t^i)^2\right)^{-1}$ .
  - If  $ESS_t < N/2$ , then

$$\theta_t^1,\dots,\theta_t^N \sim rac{1}{\sum_{i=1}^N w_t^i} \sum_{i=1}^N w_t^i \delta_{ heta_t^i}$$
 iid

and reset  $w_t^i = 1/N$  for all i

▶ Return  $\hat{\pi}_T = \frac{1}{\sum_{i=1}^N w_T^i} \sum_{i=1}^N w_T^i \theta_T^i$ 

#### It's OK but...

▶ still potentially high variance as particles are highly correlated.

- ightharpoonup T = 100 samples,
- ▶ *N* = 100 particles.

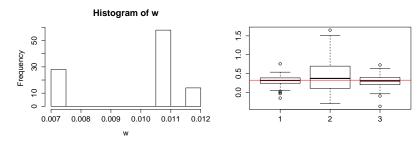


Figure: Left: example set of weights. Right: estimates of the posterior mean for 100 repetitions.

# The SMC sampler (Chopin, 2002)

#### SMC sampler

- ▶ Sample  $\theta_0^1, \dots, \theta_0^N \sim \pi_0$  iid and set  $w_0^i = 1/N$  for all i.
- ▶ For  $1 \le t \le T$ ,
  - Set  $w_t^i \propto w_{t-1}^i p(y_t|y_{t-1},\theta_t^i)$ .
  - $\bullet \ \operatorname{Set} \, \theta^i_t = \theta^i_{t-1}.$
  - Compute  $ESS_t = \left(\sum_{i=1}^N (w_t^i)^2\right)^{-1}$ .
  - If  $ESS_t < N/2$ , then

$$heta_t^1,\dots, heta_t^N \sim rac{1}{\sum_{i=1}^N w_t^i} \sum_{i=1}^N w_t^i \delta_{ heta_t^i}$$
 iid

- reset  $w_t^i = 1/N$  for all i
- Move  $\theta_t^i \sim K_t(\theta_t^i, \cdot)$  for all i
- Return  $\hat{\pi}_T = \frac{1}{\sum_{i=1}^N w_T^i} \sum_{i=1}^N w_T^i \theta_T^i$

# The SMC sampler (Chopin, 2002)

#### SMC sampler

- ▶ Sample  $\theta_0^1, \dots, \theta_0^N \sim \pi_0$  iid and set  $w_0^i = 1/N$  for all i.
- ▶ For  $1 \le t \le T$ ,
  - Set  $w_t^i \propto w_{t-1}^i p(y_t|y_{t-1}, \theta_t^i)$ .
  - Set  $\theta_t^i = \theta_{t-1}^i$ .
  - Compute  $ESS_t = \left(\sum_{i=1}^N (w_t^i)^2\right)^{-1}$ .
  - If  $ESS_t < N/2$ , then

$$\theta_t^1,\dots,\theta_t^N \sim rac{1}{\sum_{i=1}^N w_t^i} \sum_{i=1}^N w_t^i \delta_{ heta_t^i}$$
 iid

- reset  $w_t^i = 1/N$  for all i
- Move  $\theta_t^i \sim K_t(\theta_t^i, \cdot)$  for all i
- Return  $\hat{\pi}_T = \frac{1}{\sum_{i=1}^N w_T^i} \sum_{i=1}^N w_T^i \theta_T^i$

#### It's finally OK!

- $ightharpoonup K_t$  is chosen to leave  $\pi_t$  invariant.
- ▶ the "move" step rejuvenates the set of particles.

- ightharpoonup T = 100 samples,
- ▶ *N* = 100 particles.
- ▶ Move kernel is MH with wide proposal.

# Histogram of w

Figure: Left: example set of weights. Right: estimates of the posterior mean for 100 repetitions.

#### Teaser

 Next lecture, we will start generalizing this approach to inference in HMMs,

► Some keywords: high-dimensional inference for time-series data, Kalman filter, SMC filter, smoothing.