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Course Information

Lectures: MWF 9:30-10:40

Lecture notes or relevant study materials will be posted every
week.

The course will be graded on two homeworks and one end
term project.

Homework 1: 25%, Homework 2: 25% and End Term: 50%.

Students taking Satisfactory/Unsatisfactory are required to
submit all the homeworks and the final project.

There will be a 23 minutes presentation for the end term
project. I would encourage you to work on the end term
project from the late January.

Lectures will be delivered for 9 weeks. Last week is reserved
for the end term presentation.
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Overview

High dimensional regression with an emphasis on Bayesian
methodology

Penalized optimization: Ridge regression, lasso, elastic net,
adaptive lasso, group lasso.

Bayesian high dimensional regression:
(i) g-prior, two paradoxes, connection with model selection,
mixture of g-priors.
(ii) Spike and slab prior, detailed discussion, problem with
model selection and computation, stochastic search variable
selection, issues.
(iii) Median probability model in connection with spike and
slab prior.
(iv) shrinkage estimation, how the name has appeared,
motivation, some of the prominent shrinkage priors, Polson
and Scott representation.
(v) Briefly describe a theoretical result for shrinkage priors.
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Overview Cont.

Modeling big data
(i) Divide and conquer technique in big data, finding sufficient
statistic.
(ii) Sequential Monte Carlo.
(iii) Assumed density filtering.
(iv) Stochastic gradient decent and other applications through
stochastic gradient Langevin dynamics.

Approximate Bayes method
(i) Variational Bayes: Definition, how to compute it.
(ii) Variational Bayes in nonparametric models.
(iii) Stochastic variational inference.
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Regression Analysis: An old tool

Statistical regression is occupying the literature from early
19th century.

The entire strength of statistics comes from regression
analysis.

With the advancements in computation techniques and
various sources of data, regression analysis has been extended
to model various situations.

Our motto is to discuss techniques that makes us up to date
with the modern techniques in regression analysis.

In particular, we will discuss situations where the number of
predictors is large.

Such things typically occur in biomedical applications.
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Linear Regression: Formulation

y = β0 + β1x1 + · · ·+ βpxp + ε, ε ∼ N(0, σ2)

Different structures of ε can be accommodated.

We minimize sum of squared errors to estimate the regression
coefficients.
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Understanding Error

Sum of squared error is a representation of the error in the
OLS.

Sum of squared prediction error is the sum of variance and
square of bias.

Though we only care about the squared prediction error, it
becomes helpful to individually understand variance and
squared bias.
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Tradeoff between Bias and Variance

There is a tradeoff between bias and variance in the sense
that if model complexity increases, bias decreases, variance
increases.

It is always important to protect from under and over-fitting.

Important to hit the point with lowest prediction error.
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Gauss Markov Theorem

Gauss Markov theorem states that among all linear unbiased
estimates, OLS has the smallest error.

There can be some BIASED estimator which is able to provide
lower MSE.
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Shrinkage Estimation

Let OLS estimate is β̂j . What happens to the MSE if we use

an estimator β̃j =
β̂j

1+λ?

Initially looks like a crazy idea, but lets give it a shot.

In particular, can we achieve lower MSE than OLS?

Yes, we can. But the resulting estimator has to be biased.
Whatever we pay for bias is compensated by the variance.

λ that minimizes the error is λ = pσ2∑p
j=1 β̂

2
j

.

Note: As λ becomes big this estimator approaches to 0.
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Shrinkage Estimation

Charles Stein with his student James found that the estimator

β′j =

(
1− (p−2)σ2∑

β̂2
j

)
β̂j has less MSE when σ2 is known.

Stanley Sclove proposed to shrink the estimator close to zero

if we find negative value, i.e.

(
1− (p−2)σ2∑

β̂2
j

)+

β̂j .

If σ2 is unknown, he proposed taking β′j =

(
1− cRSS∑

β̂2
j

)+

β̂j ,

for some constant c .
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Shrinkage Estimation Contd..

Note that the F-statistic is given by F =
∑
β̂2
j /p

RSS/(n−p) .

Expressing Sclove estimator as β′j =
(

1− c(n−p)
pF

)+
β̂j , it

seems that if the F test statistic is greater than c then all
estimators are set to zero.
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Shrinkage Estimation Contd...

The above estimation sets all elements to either zero or
nonzero.

Stepwise regression adds or subtracts new variables in the
regression if there is an improvement in terms of AIC or BIC.
AIC = n RSS +2 df, AIC = n RSS + log(n) df.

But this is not automated. Is there any method that
automates shrinkage?

What about the shrinkage parameter. Can we use it to
estimate stuff?
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Ridge Regression

In statistical literature, ridge regression was introduced from a
completely different perspective.

Remember, if X is the n × p matrix and y is the n × 1
responser vector, OLS estimator is given by the solution to the
equation X ′Xβ = X ′y .

Suppose X ′X does not have an inverse or the inverse is highly
unstable.

Can happen when n < p or when columns are highly
correlated.

One idea is to solve (X ′X + λI )β = X ′y , with small λ.
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Ridge Regression

For ridge regression β̂ = (X ′X + λI )−1X ′y .

Note that E (β̂) = (X ′X + λI )−1X ′Xβ 6= β.

Var(β̂) = σ2(X ′X + λI )−1X ′X (X ′X + λI )−1.

λ is the key parameter. How to choose λ?
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Generalized Cross Validation to Choose λ

k fold:
(i) Divide the data into ten (equal) parts, S1, ...,Sk .
(ii) Set λ on a grid, say λ ∈ {λ1, ..., λs}.
(iii) For every λj , use S−i1 to fit the model and Si1 to
calculate model fitting error for i1 = 1, ..., 10.
(iv) Find the average mean squared error.
(v) Choose that λj which minimizes this error.
(vi) In general, k = 10 is used.

leave one out:
(i) When n is small, generally leave one out cross validation is
preferred over the k fold.
(ii) Fit the model with n− 1 data points and validate with the
nth one.
(iii) Repeat it for all sample points to calculate the mean
squared error.
(iv) Choose λj that minimizes the error.
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More on Ridge Regression

Ridge regression will ensure that the coefficients decrease in
size.

In Ridge regression, one does not penalize the intercept as it
is in the same scale as the predictors.

Also predictors can be of vastly different scales. To ensure fair
shrinkage to all, generally predictors are standardized.

This also sets the intercept to zero.

R code to compute ridge regression is attached.
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Variable Selection

Variable selection means to select important variables which
are affecting the response under the regression model.

For example, there may be a subset of coefficients which are
identically zero. The corresponding predictors have no effect
on the regression.

For ridge regression the coefficients are zero only when
λ =∞.

Therefore ridge regression can’t select variables.

It is useful when a lot of coefficients are close to zero.

It also does not perform well when a lot of coefficients are
moderately large.

Some post-processing steps may be taken to select variables.
But is there any model based straightforward way to select
variables?
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Lasso

Lasso is an acronym for least absolute selection and shrinkage
operator.

It combines the good features of ridge regression with variable
selection.

It is competitive in terms of prediction error w.r.t ridge
regression.

Note that the formulation of ridge regression is

arg min
β

n∑
i=1

(yi − x ′iβ)2 + λ

p∑
j=1

|βj |2

Lasso replaces l2 penalty by the l1 penalty, i.e.

arg min
β

n∑
i=1

(yi − x ′iβ)2 + λ

p∑
j=1

|βj |
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Lasso Contd..

As λ increases less variables are included, might have higher
prediction error after certain λ.

The idea is to choose λ so as to have proper model fit as well
as variable selection.

λ is again chosen using generalized cross validation.

Code for lasso.

Great thing about lasso is its property of variable selection.
Why it happens to lasso and not to ridge?
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Insight into the Geometry of Lasso and Ridge

the ridge and lasso optimization can be written as the
minimization over β

||y − Xβ||2 subject to ||β||22 ≤ λ
||y − Xβ||2 subject to ||β||1 ≤ λ.

The above is equivalent to the optimization problems

(β − β̂OLS)′X ′X (β − β̂OLS) subject to ||β||22 ≤ λ
(β − β̂OLS)′X ′X (β − β̂OLS) subject to ||β||1 ≤ λ.

OLS corresponds to the unconstrained optimization.

The shapes of ridge and lasso are discussed in class.
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Elastic net: Motivation

Variable selection with lasso has two shortcomings.
(i) The number of variables selected is bounded by the total
number of samples in the dataset.
(ii) Lasso fails to perform group variable selection, i.e. if a
group of variables are correlated, lasso tends to select only one
of them.

Elastic net is motivated by the above two shortcomings.

You are throwing a net to catch multiple fishes together.

Theorem: Suppose xi = xj and J(β) is a strictly convex function.

Suppose β̂ is obtained by optimizing the objective function
||y − Xβ||2 + λJ(β). Then β̂i = β̂j .

Since elastic net penalty is strictly convex, elastic net achieves
group variable selection.
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Elastic Net

The elastic net forms a hybrid of the l1 and l2.

The l1 part of the penalty generates a sparse model.

The quadratic part of the penalty
(i) removes limitation on the number of selected variables;
(ii) encourages grouping effect.

X ∗(n+p)×p =
1√

(1 + λ2)

(
X√
λ2I

)
, y∗ = (y , 0)′,

γ =
λ1√

1 + λ2
,β∗ =

√
1 + λ2β.

The elastic net objective function can be written as

||y∗ − X ∗β∗||2 + γ||β∗||1.

Thus elastic net can select all p predictors.
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Connections Between Lasso, Elastic Net and Ridge

Naive elastic net is given by

β̂elastic = arg min ||y − Xβ||2 + λ1||β||2 + λ2||β||1

Elastic net penalty can be viewed as∑p
j=1

[
(1− α)|βj |+ α|βj |2

]
.

α = 0 gives lasso, α = 1 gives ridge.

Solution to the above elastic net penalty is known as the naive
elastic net. Unfortunately it does not perform well in practice.

The intuitive reason being double penalization.

Actual elastic net is scaled naive elastic net estimates,
β(enet) = (1 + λ2)β(naive enet).

Fall 2016



Adaptive Lasso

The adaptive lasso uses a weighted penalty of the form∑p
j=1 wj |βj | where wj = 1/|β̂j |ν , β̂j is the ordinary least

squares estimate and ν > 0.

The adaptive lasso yields consistent estimates of the
parameters while retaining the attractive properties of lasso.
Idea is to favor predictors with univariate strength, to avoid
spurious selection of noise predictors.

When p > n, can use univariate regression coefficients in
place of full least squares estimates.

In general, when the predictors are correlated it is a good
practice to use univariate regression coefficients.

Adaptive lasso recovers the correct model under milder
condition than lasso.

Computationally it does not add any extra significant burden
to lasso computation.
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Group Lasso

In some problems, the predictors belong to pre-defined groups.

In this situation it may be desirable to shrink and select the
members of a group together. The group lasso in one way to
achieve this.

Suppose p predictors are divided into m groups, with pj
number of predictors in group j , j = 1, ...,m;
p1 + · · ·+ pm = p.

X j matrix corresponding to the jth group of predictors.

βj is the vector coefficient corresponding to X j .

Group lasso minimizes

arg min
β∈Rp

||y − β01−
m∑
j=1

X jβj ||2 + λ

m∑
j=1

√
pj ||βj ||2
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Clustering in High Dimensions: Nonnegative Matrix
Factorization

Given a matrix Mp×n and a desired rank k << min(n, p), find
W p×k and Hk×n s.t. M ≈WH by solving an optimization
problem minW>0,H>0||M −WH ||2.

Why do this when SVD does a better job in approximating M .

If M = UΣV , then ||M −UkΣkV k || ≤ ||M −WH ||.
Reason to do NMF: For nonnegative data NMF approximation
provides better interpretation.
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NMF and K-Means Clustering

k-means clustering can be written as ||M −WH ||2.

Columns of H gives us the cluster membership indicators.

Look at the largest element in each column of H .

That sample is included in the corresponding cluster.

Sometimes to make it similar to the K-means, sparse NMF is
employed.
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Penalized Optimization: Unsatisfactory in Predictive
Inference

Penalized optimization is unable to provide predictive
inference. Only provides point prediction.

Typical focus in many scientific applications is uncertainty
characterization.

Different choices of tuning parameters may affect inference
considerably.
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Bayesian Approach

If loss function corresponds to a likelihood & penalty to the
log prior (up to normalizing constants), then estimates
correspond to mode of a Bayesian posterior (MAP estimates).

Consider the linear regression model with known σ2 and with
prior

yi ∼ N(x ′iβ, σ
2), βj ∼ πβ.

The log posterior of β upto a constant is

− 1

2σ2
||y − Xβ||2 +

p∑
j=1

log(πβ(βj)
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Although such estimators correspond to the mode of a
Bayesian posterior, they are typically not viewed as Bayesian.

Bayes estimators β̂Bayes are defined as the value that
minimizes the Bayes risk.

Bayes risk is the expectation of a loss L(β̂,β) averaged over
the posterior of β.

For example, if we choose squared error loss, β̂ is the
posterior mean.

MAP is not a Bayes estimator for a reasonable choice of loss
function.

Also, we would like to utilize the whole posterior instead of
just using a point estimate.
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Bayesian Approach in High Dimensions

Bayesians choose a prior distribution π(β, σ2) and calculate
the posterior

π(β, σ2|y ,X ) =
π(β, σ2)N(y |Xβ, σ2I )∫

π(β, σ2)N(y |Xβ, σ2I )dβdσ2

When n >> p, π(β, σ2|y ,X ) ≈ N(β|β̂, I (β)−1), where I (β)
is the Fisher information matrix.

The above is called the Bernstain-Von Mises theorem or the
Bayesian central limit theorem.

This essentially means that when n >> p, prior does not have
much role in determining the posterior. In fact, the likelihood
swamps the prior and we essentially get equivalent results
from frequentist and Bayesian.

This rosy picture breaks down when p is large.

Prior has profound effect for large p and it is essential to
carefully design the prior.
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Prior Design

Priors should be designed in such a way that the posterior of
β concentrates around the “true” β0.

Prior should have sufficient information. Flat prior on β gives
inconsistencies.

Motivated by the idea of sparsity, one popular approach is to
impose sparsity on β through prior distributions.

Later we will see that designing prior on β can also be
governed by other considerations.
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Bayesian Variable Selection by Sparsity

Spike and slab prior

βj
iid∼ π0δ0 + (1− π0)g .

One popular choice of g is N(0, c).
π0 is the prior probability of excluding a predictor.
δ0 is the degenerate distribution at 0.
Prior on the nonzero coefficients are given by g .
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More into Spike and Slab

Define the variable inclusion indicator by γj = I (βj 6= 0).

Therefore, γ1, ..., γp indicate which predictors are included in
the model, γ = (γ1, ..., γp)′ ∈ {0, 1}p.

Note that, depending on whether a variable is included or
excluded, the total number of candidate models is 2p.

A candidate model is represented by γ.

The size of this model pγ =
∑p

j=1 γj ,
pγ ∼ Binomial(p, 1− π0).

Thus the expected model size is p(1− π0).

Clearly, if we fix π0 and p is big, it gives a lot of prior
information on the model size.

π0 is an important parameter and generally assigned a beta
prior.
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Posterior Probability of γ

Let βγ = {βj : γj = 1, j = 1, ..., p}.
Marginal likelihood of the model γ is

L(γ|y ,X ) =

∫
N(y |X γβγ , σ

2I )π(βγ , σ
2)dβγdσ

2.

The posterior probability of model γ is given by

π(γ|y ,X ) =
L(γ|y ,X )π(γ)∑

γ∗ L(γ∗|y ,X )π(γ∗)
.

Not feasible to compute posterior probability of each model
since there are 2p of them.
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Stochastic Search Variable Selection

Due to the intractability of calculating the posterior
probabilities exactly, stochastic search is often used.

Stochastic Search Variable Selection (SSVS) moves between
multiple models and comes back to models which are more
representative of the data.

SSVS (George & McCulloch, 1997, Statistica Sinica) rely on
MCMC to conduct this search.

βj ∼ (1− γj)N(0, v0j) + γjN(0, v1j), γj
ind .∼ Ber(wj).

v0j small, v1j “reasonably” big (away from 0).

George & McCulloch suggested taking v0j = τ2
j , v1j = gτ2

j , g

big, τ2
j small.

β = (β1, ..., βp)′, γ = (γ1, ..., γp)′.

π(β,γ, σ2) =
[∏p

j=1 π(βj |σ2, γj)π(γj)
]
π(σ2).

π(β,γ, σ2|y) ∝ N(y |Xβ, σ2I )π(β,γ, σ2).
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Problems with SSVS

MCMC runs for a large number of iterations and hops
between different models. Posterior probability of a model is
estimated by the proportion of times the model has been
visited by the Markov chain.

Suffers when there are high correlations between variables.

Not useful if one wants to add a flat prior to the βj ’s.

Choice of g gives headache.

Often viewed as not scalable to really big p but use of GPUs
& other tricks helps.
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Inference from SSVS

Huge advantage of Bayes is the ability to quantify uncertainty.

Bayes allows estimation of marginal inclusion probabilities
P(γj = 1|y ,X ). It is the proportion of times MCMC iteration
visits a model with jth variable included.

It is an indication of how important a predictor is.

One might employ selection of predictors by thresholding
marginal inclusion probability at 0.5.

The above gives rise to the median probability model which
enjoys predictive optimality properties.
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More on SSVS

SSVS is appealing for its ability to select variables.

We will discuss its theoretical optimality properties later.

A major drawback of the SSVS is the combinatorial search for
big p. This is computationally cumbersome for big p.

If a few predictors are highly correlated, SSVS tends to miss
all of them.

It is sometimes appealing computationally & philosophically
to relax assumption of exact zeros.

That is sparsity can be introduced in a “weaker sense”.

“ This view of sparsity may appeal to Bayesians who oppose
testing point null hypotheses, and would rather shrink than
select”.

Instead, we want coefficients corresponding to the noisy
predictors are approximately zero while leaving signals alone.
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Continuous Shrinkage Priors

Shrinkage priors are continuous prior distributions which pulls
the unimportant predictor coefficients to zero while keeping
the important predictor coefficient unshrunk.

Predictor coefficients are not exactly zero but close to zero.

Rich literature on shrinkage priors - Laplace (Bayes Lasso),
Cauchy, horseshoe, generalized double Pareto, etc.

Priors should concentrate at zero with heavy tails.
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Global Local Representation

Polson and Scott (2010) show that essentially all shrinkage
priors can be represented as

βj |ψj , τ
ind .∼ N(0, ψjτ), ψj

iid∼ g , tau ∼ f .

Global-scale τ facilitates concentration near zero.

Local-scales highly variable to avoid over-shrinking βj ’s
corresponding to important predictors.

Scale mixtures of Gaussians allow simple Gibbs sampler form
in most cases and hence computationally appealing.

In this formulation, the sparseness problem is the mirror image
of the outlier problem.

Strong global shrinkage handles the noise; the local ψj ’s act
to detect the signals, which are outliers relative τ .
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Early Shrinkage Priors

βj |τ, ψj ∼ N(0, τ2ψ2
j ), ψ2

j ∼ IG (ζ/2, ζ/2), τ2 ∼ IG (a, b). This
gives rise to βj |τ ∼ tζ(0, τ).

Strawderman-Berger prior: βj |ψj ∼ N(0, λ−1
j − 1),

ψj ∼ Beta(1/2, 1).
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Early Shrinkage Priors

Bayesian Lasso (Park and Casella, 2008; Hans 2009).

π(β|σ2) =

p∏
j=1

λ

2
√
σ2

exp(−λ|βj |/σ).

Double exponential can be written as a scale-mixture of
normal distributions.

β|τ2
1 , ..., τ

2
p ∼ N(0, σ2diag(τ2

1 , ..., τ
2
p )),

π(τ2
j ) =

λ2

2
exp(−

λ2τ2
j

2
)

σ2 ∼ πσ.

Closely resembles Frequentist lasso.

π(λ2) = δr

Γ(r) (λ2)r−1e−δλ
2
.

Fall 2016



Full conditionals

Let (X ′X + diag(τ2
1 , ..., τ

2
p )) = A,

β|− ∼ N(A−1X ′y , σ2A−1)

σ2|− ∼ IG (n−1+p
2 , (y−Xβ)′(y−Xβ)

2 )

1
τ2
j
|− ∼ InvGaussian(µ′, λ′), µ′ =

√
λ2σ2

β2
j
, λ′ = λ2.

λ2|− ∼ IG (p + r , δ +
∑p

j=1 τ
2
j /2).

Other priors on λ2 has also been used.

One can also apply empirical Bayes technique to estimate the
parameter λ.
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Horseshoe

Horseshoe was proposed for the normal means problem, i.e.
yi = θi + εi , εi ∼ N(0, σ2).

θi |λi ∼ N(0, τ2λ2
i ), λi ∼ C+(0, 1), τ ∼ C+(0, 1).

The same prior can be applied to the regression coefficients.

Let κi = 1
1+λ2

i τ
2 , then E (βi |y , λi , τ) = (1− κi )yi .

We expect κi to be either close to zero or close to 1.

Show figures of κi for some priors.

In Horseshoe κi ∼ Beta(1/2, 1/2).

Fall 2016



κi Distribution of Different Priors
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Generalized Double Pareto

f (β|α, ζ) = 1
2ζ

(
1 + |β|

αζ

)−α+1
.

ζ = α = 1 is the standard double pareto distribution.

β ∼ N(0, τ), τ ∼ Exp(λ2/2), λ ∼ Ga(α, η), then
β ∼ GDP( ηα , α).

If α grows, density becomes lighter tailed. If η grows, density
becomes flatter and variance increases.

If α and η both grows at the same rate, variance becomes
constant but tails become lighter. It reaches to a laplace
density.

Default is α = η = 1. It gives a cauchy like tail behavior.
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Conditional Posterior Distributions

βj |τj , σ2 ∼ N(0, σ2τj), τj ∼ Exp(λ2
j /2), λj ∼ Gamma(α, η).

β|− ∼ N((X ′X + T−1)−1X ′y , σ2(X ′X + T−1)−1)

λj |− ∼ Gamma(α + 1, |βj |/σ + η)

1
τj
|− ∼ Inv − Gaussian(

√
(λ2

j σ
2)/β2

j , λ
2
j )

σ2|− ∼ IG ((n + p)/2, (y − Xβ)′(y − Xβ)/2 + β′T−1β/2)

where T = diag(τ1, ..., τp).

Put prior on α and η, π(α) = 1
(1+α)2 , π(η) = 1

(1+η)2 . They

are both centered at α = η = 1.

Fall 2016



Can Compressing Predictors Help?

xp

1

x1, ..., xn are of mammoth size.

Storage is highly prohibitive, let alone
computation.

Idea

Compressing predictors randomly in low dimension helps solve our
problem.

Φm

p

xp

1

Random Projection Matrix
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Random Projection Matrix: Lots of Zeroes Required in Φ

Overwhelming literature on scaled Gaussian projection matrix
(Φij ∼ N(0, 1/m))→ popular choice.

We anticipate sparsity in the true predictor coefficients.

Might be important to have lots of zero entries in Φ.

Random Projection (Dasgupta 2003, 2013)→ Our Choice

Φij =


−1/
√
ψ w .p. ψ2

0 w .p. 2ψ(1− ψ)
1/
√
ψ w .p. (1− ψ)2

Rows of Φ are orthonormalized using Gram-Schmidt
orthogonalization procedure.
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Bayesian Compressed Regression

Compressed Regression

y = (Φx)′β + ε, ε ∼ N(0, σ2)

β is the low dimensional coefficients on compressed predictors.

yn

1

= Xn

p

Φ′p

m

βm

1

+ εn

1

No longer in the high-dimensional setting, use conjugate prior.

Conjugate Prior

β |σ2 ∼ N(0, σ2Σβ), σ2 ∼ IG (a, b).
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Analytical Posteriors & Posterior Predictive Distributions

Posteriors

β | y ,X ,Φ ∼ tn (µ,Σ) , σ2 | y ,X ,Φ ∼ IG (a1, b1)

Posterior Predictive Distribution

yn+1 | y ,X ,Φ, xn+1 ∼ tn
(
µpred , σ

2
pred

)
Only needs sufficient statistics X ′X , X ′y and y ′y .

Only matrix operation required m ×m matrix inversion and
m × p, p × n matrix multiplication.
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g-Prior

g-prior was another class of approach that has surfaced long
back due to its computational ease.

Let φ be the precision parameter. The formulations of g-prior
is

β|φ ∼ N(0,
g

φ
(X ′X )−1), π(φ) ∝ 1

φ

How to choose g? Can a fixed g be used?

Let the class of models be given by {Mγ : γ = (γ1, ..., γp)}.
The marginal likelihood is given by

π(y |Mγ) =
Γ((n − 1)/2)
√
π
n−1√

n
||y − ȳ ||−(n−1) (1 + g)(n−1−pγ)/2

[1 + g(1− R2
γ)](n−1)/2

.

pγ is the number of nonzero γ in Mγ .

R2
γ is the R2 statistics for the model Mγ .
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Mixture of g-prior

Zellner-Siow prior:
π(g) =

√
(n/2)Γ(1/2)g−3/2e−n/(2g), g > 0

Hyper-g prior: π(g) = a−2
2 (1 + g)−a/2, g > 0.

Fall 2016



Big data, large sample size n

In many machine learning or environmental applications
number of predictors is small.

Sample size is massive.

Important data applications.

It is a wide area with different strategies applied to different
models.

We will see a few strategies.
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Divide and Conquer

The idea is to divide the data into subsamples.

Sequentially feed subsamples to the model.

If the posterior distribution is dependent on the data only
through sufficient statistics, it is a good strategy.
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