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S

Particle filter methods are complex inference procedures, which combine importance
sampling and Monte Carlo schemes in order to explore consistently a sequence of multiple
distributions of interest. We show that such methods can also offer an efficient estimation
tool in ‘static’ set-ups, in which case p(h |y1 , . . . , yN ) (n<N) is the only posterior distri-
bution of interest but the preliminary exploration of partial posteriors p(h |y1 , . . . , yn )
makes it possible to save computing time. A complete algorithm is proposed for indepen-
dent or Markov models. Our method is shown to challenge other common estimation
procedures in terms of robustness and execution time, especially when the sample size is
important. Two classes of examples, mixture models and discrete generalised linear models,
are discussed and illustrated by numerical results.

Some key words: Batch importance sampling; Generalised linear model; Importance sampling; Markov chain
Monte Carlo; Metropolis–Hastings; Mixture model; Parallel processing; Particle filter.

1. I

Markov chain Monte Carlo methods are now a common tool for Bayesian inference.
Unfortunately, in dynamic set-ups, when a sequence of posterior distributions p

t
is

involved, Markov chain Monte Carlo techniques may be unusable as they need to generate
a different chain run for each posterior p

t
, and do not take into account the previous

generations from p
t−1

. Instead, some authors have been developing more efficient methods
based on importance sampling iterative strategies. In this context, an inference about p

t−1
can be easily used to draw an inference on p

t
by a ‘reweighting’ operation. These methods

are usually referred to as ‘particle filter methods’ (Doucet et al., 2001, Ch. 1).
The purpose of this paper is to show that such methods can also improve estimation

in static scenarios, when a single posterior density p(h |y1 , . . . , yN ) is involved. For instance,
common simulation procedures are not practicable on huge datasets, because they consist
of numerous iterations, each of which requires the whole sample to be processed. We
propose an alternative structure, which provides significant computational savings by
performing preliminary explorations of partial distributions p(h |y1 , . . . , yn ) (n<N): an
inference is first drawn from the n first observations, and this inference is then updated
through importance sampling to incorporate the following p observations. This strategy
can be iterated several times to provide finally inference based on the whole sample.
We create artificial dynamics that correspond to the way that the data are processed
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recursively, in batches: a particle filter is applied to a sequence of partial posterior distri-
butions, p

t
(h)=p(h |y1 , . . . , yn

t

), with n1< . . .<nt< . . .<nT=N.
From now on, the observations y

n
are assumed to be drawn from a parametric family

{P
h
; hµH}, where H is an open subset of RK (K�1). The notation y

n:n+p
will refer to

the sequence of observations y
n
, . . . , y

n+p
. A partial posterior distribution p(h |y

1:n
) will

be denoted by p
n
, so that p

N
will stand for the ‘complete’ posterior distribution.

Section 2 recalls the main properties of particle filter methods. Section 3 presents the
batch importance sampling scheme, which consists of importance sampling applied to
partial posteriors p

n
. Section 4 details the iterated batch importance sampling algorithm,

a particle filter designed for estimating expectations E
p
N

{h(h)}, in cases where the
observations are either independent or Markov. This algorithm is a special case of the
resample-move particle filter of Gilks & Berzuini (2001). Section 5 describes application
to generalised linear models and mixture models.

2. P 

2·1. Importance sampling

A particle system is a sequence (h
j
, w
j
) of weighted random variables in H, h

j
being a

particle with weight w
j
, which targets a distribution of interest p over H in the sense that

lim
H�+2

WH
j=1
w
j
h(h
j
)

WH
j=1
w
j
=E
p
{h(h)},

almost surely, for any measurable h such that E
p
{h(h)} exists.

When the particles are drawn independently from a distribution g, weights proportional
to p(h

j
)/g(h
j
) provide a particle system with target p: this is importance sampling. The

ratio p(h
j
)/g(h
j
) is often known only up to a multiplicative constant, which is cancelled by

the denominator WH
j=1
w
j
. The resulting estimator m@ (h)=WH

j=1
w
j
h(h
j
)/WH
j=1
w
j
is biased but

consistent, and we have

HD{m@ (h)−E
p
(h)}�N{0, V

p/g
(h)},

in distribution, where V
p/g
(h)= var

g
[{p(h)/g(h)}{h(h)−E

p
(h)}].

Thus, it is sensible to consider the quantity V
p/g
(h) as a measure of the efficiency of

importance sampling based on the instrumental g. This quantity can be ‘normalised’ by
dividing by var

p
{h(h)} , in order to remove the variability caused by the studied phenom-

enon itself. We define

t
p/g
(h)=V

p/g
(h)[var

p
{h(h)}]−1.

This normalised measure of efficiency is directly related to the concept of effective sample
size of Carpenter et al. (1999), which is the sample size required to attain the same precision
as with particles drawn directly from the target distribution p: the effective sample size
for a function h is equal to Ht

p/g
(h)−1 in an univariate setting.

We will also use the following properties, as sufficient finiteness conditions for V
p/g
(h)
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541Particle filter methods

and t
p/g
(h) (Geweke, 1989):

sup
hµH
Ap(h)g(h)B<+2, Eg{h(h)h(h)∞}<+2.

2·2. Iterated applications of importance sampling

A major advantage of particle systems is their flexibility: a simple reweighting operation
w∞
j
=w
j
p2 (hj )/p1 (hj ) shifts the target of a particle system from p1 to p2 (Liu & Chen, 1998;

Gilks & Berzuini, 2001). The ratio p2 (hj )/p1 (hj ) is called the incremental weight.
When the distribution of interest p

t
is evolving through time, this reweighting scheme

can be iterated for each p
t
. Unfortunately, each reweighting phase introduces a bit more

variability in the estimates, as p
t
moves away from p1 : fewer and fewer particles retain

significant weights, and the mass of the considered distribution p
t

can even leave the
support of the distribution p1 from which particles are initially drawn. The particle system
suffers from progressive ‘impoverishment’ or ‘degeneracy’.

The reweighting steps can be alternated with resampling steps in which each particle h
j

is replaced by a number n
j
of its replicates; n

j
may be zero. Each new particle is assigned

unit weight. The n
j
’s can be determined in various ways, the most famous being multi-

nomial selection (Gordon et al., 1993), in which a resampled particle hr
j∞

is drawn in such
a way that

pr (hr
j∞
=h
j
)=w

jN∑ wj ( j=1, . . . , H).
This method keeps the estimators unbiased; note that the n

j
’s are random. More elaborate

unbiased selection schemes include residual resampling (Liu & Chen, 1998) and stratified
resampling (Carpenter et al., 1999). Liu & Chen (1998) and Doucet et al. (2001, Ch. 4)
provide good reviews.

It must be stressed that resampling does not protect from degeneracy: it just saves
further calculation time by getting rid of particles with insignificant weights. Moreover,
resampling artificially conceals impoverishment, by replacing high weights with numerous
replicates of an unique particle, thereby introducing high correlations between particles.

Gilks & Berzuini (2001) added a rejuvenation step to the resampling step. Resampled
particles at stage t are then ‘moved’ according to a Markov chain transition kernel with
stationary distribution p

t
; that is hm

j
~K
t
(hr
j
, . ). This operation does not change the system

target, but it may strongly reduce impoverishment, since identical replicates of a single
particle are replaced by new ‘fresh’ values. Efficiency of the rejuvenation step obviously
relies on a sensible choice of K

t
, while assessing the efficiency for a given kernel may be

a difficult task in practice.
The term particle filter methods will refer to algorithms which provide consistent

inferences from a sequence of distributions p
t
, by iterating the following steps.

P  
Step 1. Reweighting: update the weights, w

j
÷w
j
×p
t+1
(h
j
)/p
t
(h
j
), for j=1, . . . , H.

Step 2. Resampling: resample (h
j
, w
j
)
j=1,...,H

� (hr
j
, 1)
j=1,...,H

, according to a given selec-
tion scheme.
Step 3. Move: draw hm

j
~K
t+1
(hr
j
, .) for j=1, . . . , H, where K

t+1
is a transition kernel

with stationary distribution p
t+1
.

Step 4. L oop: t÷t+1, (h
j
, w
j
)
j=1,...,H

÷ (hm
j
, 1)
j=1,...,H

, and return to Step 1.
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Recent results about the convergence of such algorithms, when H�2, can be found
in a Cambridge University technical report by D. Crisan and A. Doucet.

3. B  

Our aim is to estimate a fixed-dimension parameter h0µH, from N observations
y1 , . . . , yN drawn from the ‘static’ model P (h0 ). The posterior distribution of interest is
therefore p(h |y

1:N
).

It is possible to endow this static model with a dynamical structure. Suppose only the
first n observations (n<N) are immediately available. Inference can be based on simu-
lations from the posterior p(h |y

1:n
), or more generally on a particle system with target

p(h |y
1:n

). Then assume that p new observations are available. Provided p is not too large,
p(h |y

1:n
) and p(h |y

1:n+p
) are likely to be similar, and hence we can use the results about

p(h |y
1:n

) in constructing a proper reweighting of the particles by the incremental weight

w
n,p
(h)3

p(h |y
1:n+p

)

p(h|y
1:n

)
3
p(y
1:n+p

|h)
p(y
1:n
|h)
=p(y

n+1:n+p
|y
1:n
, h).

We refer to this particular case of importance sampling as batch importance sampling.
We now describe important properties of w

n,p
(h).

First, if p(y
n+1:n+p

|y
1:n
, h) is bounded from above in h, clearly a weak condition, then

w
n,p
(h) is also bounded, which ensures that V

p
n+p
/p
n

(h) and t
p
n+p
/p
n

(h) are finite, for any h
such that E

p
n

{h(h)h(h)∞} exists; see the end of § 2·1.
Moreover, the impoverishment of the particle system induced by batch importance

sampling can be approximately evaluated by the following asymptotic result.

T 1. Under some regularity conditions, listed in the Appendix, and for any thrice
continuously diVerentiable function h :H�RL , for LµN, such that the integrals

P h(h)pn+p (h)2/pn (h) dh, P h(h)h(h)∞pn+p (h)2/pn (h) dh
exist for all n, pµN, we have that

dt
p
n+p
/p
n

(h)d=O(1),

as n�2, p/n�r>0, where d.d stands for the Euclidean norm on RL.

A proof is given in an unpublished Centre de Recherche en Economie et Statistique
technical report by the author.

We see that, when n is large enough, the relative precision of batch importance sampling
depends only on the proportion of new data, and, given that proportion, any relative
precision may be attained with a sufficiently large number H of particles, where H does
not depend on n.

Finally, in two important cases, the reweighting step only operates on the new data
y
n+1:n+p

, thus avoiding a second complete browse of y
1:n

; when the observations are
independent, we have

w
n,p
(h)3p(y

n+1:n+p
|y
1:n
, h)=a

p

i=1
p(y
n+i
|h),

and, when they are Markov of order m, that is there exists an integer m such that

p(y
n+1
|y
1:n
, h)=p(y

n+1
|y
n+1−m:n

, h),
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543Particle filter methods

we have

w
n,p
(h)3p(y

n+1:n+p
|y
1:n
, h)=a

p

i=1
p(y
n+i
|y
n+i−m:n+i−1

, h).

In both cases, the reweighting step makes possible a quick update of the particle sys-
tem, provided the likelihood p(y

n+i
|h) or p(y

n+i
|y
n+i−m:n+i−1

, h) is computable. In other
cases, batch importance sampling is less interesting, given that the calculation of
p(y
n+1:n+p

|y
1:n
, h) may become too intensive as n grows. We will therefore assume in the

sequel that the observations are either Markov or independent, and we will adopt a
common notation for both cases, that is p(y

n+1
|y
1:n
, h)=p(y

n+1
|y
n+1−m:n

, h), with m=0
if the y

i
’s are independent, in which case y

n+1:n
will stand for B.

4. T     

4·1. Statement of the algorithm

The iterated batch importance sampling algorithm is a particle filter method that iterates
the following steps.

I    
Step 0. Initialisation: generate a particle system (h

j
, w
j
)
j=1,...,H

which targets the initial
distribution p

n
0

.
Step 1. Reweighting: update the weights, w

j
÷w
j
×w
n,p
(h
j
) with

w
n,p
(h
j
)3p(y

n+1:n+p
|y
1:n
, h
j
) ( j=1, . . . , H).

Step 2. Resampling: resample, (h
j
, w
j
)
j=1,...,H

� (hr
j
, 1)
j=1,...,H

, according to a given selec-
tion scheme; see § 2·2.
Step 3. Move: draw hm

j
~K
n+p
(hr
j
, . ) for j=1, . . . , H, where K

n+p
is a transition kernel

with stationary distribution p
n+p
.

Step 4. L oop: n÷n+p, (h
j
, w
j
)
j=1,...,H

÷ (hm
j
, 1)
j=1,...,H

, and return to Step 1.

The algorithm stops when n=N, that is when the particle system targets the distribution
of interest p(h |y

1:N
). Sections 4·2–4·4 discuss components of the algorithm whose specifi-

cation can influence the algorithm efficiency, both in terms of execution time and robust-
ness of the resulting estimates. The aim is also to make the algorithm a true ‘black box’,
that is an algorithm whose internal machinery is not model-dependent; the practitioner’s
task then reduces to supplying a likelihood-computation routine, and a correctly initialised
particle system.

4·2. Choice of the move kernel

Efficiency in the move step is critical, since it is the most computationally demanding
step, in requiring a complete browsing of the past observations y

1:n
. Markov chain Monte

Carlo techniques usually involve numerous applications of a transition kernel over a single
‘particle’. In contrast, the move step of particle filter methods consists of a single appli-
cation of a given kernel, for a large set of particles. Thus the choice of a kernel must rely
on different criteria from those usually mentioned in Markov chain Monte Carlo settings:
for instance, theoretical convergence does not ensure that the particles move efficiently in
a single application of the kernel. Moreover it is not easy in practice to assess correctly
how much the system really has been rejuvenated. For example, using a Metropolis–
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Hastings kernel, one may assess the rejuvenation through the acceptance rate, regarding
the ‘accepted’ particles as new particles introduced into the system, and acknowledging
that the greater the number of new particles, the better. If the ‘proposed’ value is generated
from a random walk, that is hp

j
=h
j
+e
j
, high acceptance rates can be achieved artificially

by using e
j
with a very low variance: identical replicates of a single particle will then be

replaced by an equivalent number of particles taking distinct but very similar values,
which are therefore mutually highly correlated. System impoverishment remains high but
is no longer detectable.

It therefore seems sensible to select a transition kernel which depends weakly on the
previous value of the moved particle. Such is the case with an independent Metropolis–
Hastings kernel, in which the proposed particle is generated independently from an instru-
mental distribution g, and the moved particle only depends on its previous value through
the acceptance probability. If we use such a kernel, the acceptance rate seems a far more
reliable indicator of efficiency. Note that, when the rejuvenation is performed by such a
kernel, a browse through the whole past subsample is needed in the computation of
p
n+p
(hp
j
), which appears in the acceptance probability.

Provided we use such a kernel, high acceptance rates will be obtained with an instrumen-
tal distribution g close to the target distribution p

n+p
. However, our only information

about p
n+p

is given by the particle system itself, which can provide at the current stage
an estimate of any expectation E

p
n+p

{h(h)}, say

m@ (h)=
WH
j=1
w
j
h(h
j
)

WH
j=1
w
j
.

In particular, the estimates

EC
n+p
=
WH
j=1
w
j
h
j

WH
j=1
w
j
, VC
n+p
=
WH
j=1
w
j
{h
j
−EC
n+p
}{h
j
−EC
n+p
}∞

WH
j=1
w
j

,

give a rough idea of the location of the mass of p
n+p

. Thus the instrumental distribution
N(EC

n+p
, VC
n+p

) seems a reasonable choice: it is simple, in that, even when the dimension
of H is important, we can still easily take correlations between components of h into
account; it is not ‘model-dependent’, and hence it fulfils our black-box requirement; and
it is asymptotically justified, because, as n�2, p

n
tends towards a normal distribution.

The last point is essential: as we have said, the rejuvenation step becomes more and more
demanding as n�2, but fortunately simultaneously becomes more and more efficient.

However, for finite n, a complex posterior distribution can differ significantly from a
Gaussian distribution, possibly possessing local modes or thick tails. In the latter context,
note that the posterior distribution tails can easily be reduced by a proper reparametris-
ation: if, for instance, the density of p

n
decreases towards infinity like exp(−Kh), for h>0,

we obtain thinner, Gaussian-like tails by replacing h by h∞=hD. Also, reparameterising
the model is likely to be less time-consuming than deriving a distinct instrumental distri-
bution with tails of the same order as those of the considered distribution. This is another
appeal of our black-box approach. For these reasons, we regard N(EC

n+p
, VC
n+p

) as a
convenient all-purpose instrumental distribution.

4·3. Incorporation schedule

The distribution p
n+p

is expected to move progressively away from p
n

as p increases,
so that the impact of a reweighting step, from p

n
to p
n+p

, on system degeneracy should
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increase with p. Since the reweighting can be operated recursively, by incorporating one
observation after the other through the transitive operation

w
n,n+k+1

(h)=w
n,n+k
(h)w
n+k,n+k+1

(h),

it is possible to increase p, the number of added observations, while checking regularly
for degeneracy, and to stop this process when a given level of degeneracy is attained. A
common indicator of degeneracy is the empirical variance of the weights (Liu & Chen,
1998).

We argue however that the current representation of the weights cannot express system
degeneracy properly, since it does not take the level of (in)effectiveness of the previous
move step into account. When a given particle h

j
gives birth to n

j
replicates in the resam-

pling step, the extent to which these replicates should be seen as independent particles
after the move step is highly dependent on the efficiency of the chosen kernel. In particular,
with an independent Metropolis–Hastings kernel, it is likely that a number n∞

j
of the n

j
replicates, 0∏n∞

j
∏n
j
, are not moved, but keep the same value h

j
. It is therefore more

sensible to replace these n∞
j

identical particles by a single representative with weight n∞
j
:

this leads to a new representation of the weights, which gives a better idea of the actual
degeneracy. In particular, the empirical variance of these new weights may take consider-
ably greater values than with the previous representation, if the previous move steps are
weakly efficient. Furthermore, this new representation must also be adopted when
implementing the algorithm in practice, since it avoids useless repetitions of the same
computations for identical particles. We therefore propose to resample and move the
particles whenever the empirical variance of these new weights exceeds a given threshold d.

Theorem 1 indicates that the level of degeneracy induced by the reweighting step is
asymptotically given by the proportion p/n of new points. Thus, if we apply the same
criterion at each stage, and assume a constant level of efficiency for the move steps, we
expect the number of new points to increase geometrically. In fact, the move steps are
likely to become more and more efficient as n increases, see § 4·2, so that the incorporation
may be even faster.

4·4. Number of particles and other calibrations

Particle filter methods are only justified asymptotically, as H�+2. It would therefore
be tempting to run the iterated batch importance sampling algorithm with very large
values of H, but this would imply a tremendous computational cost. In practice, we must
determine a reasonable value of H, in computational terms, that still leads to robust
estimates. One way is to run the algorithm several times to measure the variability of the
results obtained for a given number of particles. In the independent case, the observations
should be shuffled on each run, to check that the results do not depend on the order of
incorporation of the observations. Note however that, in our numerical work, we never
faced any case of degeneracy or high variability of estimates, provided H exceeded 10 000,
even though we dealt with posterior distributions as complex as mixture distributions
over a parameter space of high dimension; see § 5·2. Note also that, if the acceptance rate
of the last move step is close to one, the final particles will be nearly independent realis-
ations of p

N
, and therefore the quantity var

p
N

{(h(h)}/H will provide a good approximation
of the variance of the estimator of E

p
N

{(h(h)} at the first execution.
In the independent case, the algorithm may perform very poorly if the order of incorpor-

ation of the observations is unfortunate. If the data are suspected of showing some partial
ordering, we recommend randomising their labels before the algorithm is implemented.
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Finally, note that the particle system may degenerate strongly in the very early stages,
when the evolving target p

n
changes the most, while the move steps do not yet show a

high efficiency. In particular, if the initial particles are simulated from a flat prior, only a
few of them will be in a region of interest for the following stages. In that case, it is
preferable to initialise the algorithm with some partial posterior p

n
0

(n0>0), based on a
small number of the observations. This is also necessary when an improper prior is
specified.

4·5. Computational considerations and the issue of parallel processing

The iterated batch importance sampling algorithm explores the parameter space H in
a distinctive way. It tracks numerous particles while smoothly browsing the sample of
observations y

1:N
, whereas most estimation algorithms track a single particle through

numerous iterations, each requiring a complete browsing of the dataset y
1:N

; ‘particle’ here
refers to a single parameter value varying at each iteration.

This strategy strongly limits the number of accesses to the dataset. In fact, our algorithm
can roughly locate the region of interest by drawing information from a small part of the
sample before exploring it more precisely, whereas its competitors would need to perform
computations over the whole sample.

Moreover, the strategy facilitates parallel processing. If K processors are available, we
can partition the particle system into K subsets S

k
(k=1, . . . , K ) , and implement compu-

tations for particles in S
k
in processor k. This partitioning must occur during the reweight-

ing step, when processor k computes the incremental weights of particles in S
k
, and the

move step, when the processor k ‘moves’ the particles in S
k
. The resampling step is much

less intensive, and does not really need this partitioning. After the reweighting and move
steps, results must be gathered together before moving onto the next step. Since the
algorithm can deal with new data at a nearly geometric rate, the frequency of move steps
quickly decreases as n grows, and therefore the frequency of required information
exchanges between processors also decreases at a rate that is exponential in n, making
the parallel processing of the reweighting and move steps quickly highly efficient.

4·6. Economies of scale

The algorithm has to be supplied with a routine for computing the partial likelihood
p(y
n+1
|y
n+1−m:n

, h) for any value of y
n+1−m:n+1

and h. This routine is called for each
particle and each added observation during the reweighting step in order to compute the
corresponding incremental weights and during the move step in order to compute the
acceptance probabilities of the Metropolis–Hastings kernel. The computational feasibility
of the algorithm therefore directly depends on the execution time of this routine. Although
p(y
n+1
|y
n+1−m:n

, h) may in some cases appear complex, particularly if it is expressed as
an integral, economies of scale are often easily achievable, permitting x evaluations of
p(y
n+1
|y
n+1−m:n

, h) in less time than x times the time needed for one evaluation. For
example, if the likelihood involves a computationally ‘costly’ function Y :R�R, one can
store preliminary evaluations of Y and its first derivatives Y(l) over a grid of points z

k
,

and then replace any further computation ofY(z) by an appropriate Taylor approximation;
see § 5·1. Also suppose that the likelihood involves an integral ∆ w(z)Q

i
(z) dz, where the

function Q
i
differs for each evaluation i. This integral can be evaluated through a given

set of evaluations of its integrand w( . )Q
i
( . ). The w( . ) may be stored the first time they are

computed, and re-used as often as necessary.
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4·7. Iterated batch importance sampling in a latent variable context

Suppose the observation y
n
is related to an unobserved, latent z

n
, such that

y
n
|{z
n
=z}~P(h0 ; z).

For such models, one can use the Gibbs sampler or the  algorithm, both of which
explore the augmented space of parameters and latent variables. However, because of its
much greater dimension, it may be more difficult to explore the augmented space efficiently.
Moreover, since the intermediary movements along the latent variables’ dimensions are
specific to a given model, implementation of a Gibbs sampler, for instance, involves the
practitioner in problem-specific programming, in contrast to the black-box nature of the
iterated batch importance sampling algorithm. Finally, the necessary complete browsing
of the sample at each iteration renders it extra-difficult to handle large databases by these
methods even in an age of great computational power. In such cases our algorithm seems
more to be recommended, provided that the marginal likelihood

p(y
n
|h)= P p(yn , zn |h) dzn

can be computed.

5. E

5·1. Generalised linear models

Generalised linear models (McCullagh & Nelder, 1989) relate independent observations
(y
i
) to their covariates (x

i
)= (x1

i
, . . . , xK

i
) through an exponential-family density of the

form

p(y
i
|h
i
)=m(y

i
) exp{y

i
h
i
−y(h

i
)}, y

i
µY,

where the canonical parameter h
i
is determined by the linear relation

h{E
h
i

(y
i
)}=h{(y∞(h

i
)}=x∞

i
b,

in which h is the link function. The row vectors of covariates x
i
form a full-rank matrix

X, and Y may be either discrete or continuous.
Application of the Gibbs sampler often appears natural, especially when a missing data

structure can be exhibited, as in binary or polytomous regression, for instance.
Unfortunately, direct simulation of these missing components is feasible only in some
special cases, such as the probit model (Albert & Chib, 1993). For other models, the hybrid
algorithm of Dellaportas & Smith (1993), relying on both Gibbs sampling and rejection
techniques, can be used provided the considered posterior distribution is log-concave,
which is often the case.

The iterated batch importance sampling algorithm can handle directly any generalised
linear model for which p(y |x, b) is computable. Moreover, as a result of the exponential
nature of the density, such a model often leads to a very regular and unimodal posterior
distribution, enabling the Gaussian instrumental distribution of the algorithm to move
the particles efficiently in the early stages; see Fig. 1(a).

Consider for instance the probit model, in which

y |x, b~ Bi{1, W(x∞b)}, Y={0, 1}.

In this case, p(y |x, b)=W(x∞b)yW(−x∞b)1−y, and the algorithm must perform numerous
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Fig. 1. (a) Acceptance rate against n, and (b) execution time, in seconds, against n,
where n is the number of observations incorporated for simulated probit data.

evaluations of the function W. In order to reduce the execution time, we implement our
Taylor approximation method, see § 4·6, for w(z)= logW(z); it is better to compute w instead
of W, since the logarithm transforms products into sums.

This method approximates w(z), for any zµ[−5, 5], up to an absolute error of 10−6,
by performing only two sums and two products, with only a few initial evaluations of w,
w∞ and w◊, over a grid of 500 points. Note that an absolute error in w corresponds to a
relative error of the same magnitude in W.

We considered a probit model with K=5 covariates. The N=1000 observations were
simulated from the true model, for a given parameter b0 . Covariates were simulated from
independent standard normal distributions, except for the first row, which was constant.
A Gaussian prior distribution N(m

0
, s2
0
) was assigned to b, with m0=0 and s0=5. Table 1

gives the resulting estimate, along with its mean squared error over 10 runs. We can see
that with a moderately large number of particles,H=2000, estimates are relatively robust.
Each execution of the algorithm took approximatively one minute on a 500 MegaHertz
desktop computer.

Table 1. Results for simulated data from a probit model, with
H=2000 and N=1000. Shown are the true value b0 of the
parameter, which is a vector of dimension 5, the estimate
EC
p
N

(b) of the posterior mean provided by the algorithm and
the mean squared error of this estimate over 10 runs

b0=−1 b0=0·7 b0=−0·5 b0=−0·1 b0=−0·3

EC
p
N

(b) −0·94 0·63 −0·49 −0·15 −0·34
 10−6 7·8×10−6 4×10−6 2×10−6 4×10−6

, mean squared error.

Figure 1 shows how the acceptance rate and the execution time, in seconds, evolve with
n, the amount of data already incorporated. As mentioned in § 4·2, the frequency of move
steps decreases very quickly, the move steps corresponding to the vertical parts of the plot
in Fig. 1(b), while their acceptance rates are already close to one at early stages. On the
other hand, move steps become more and more intensive, i.e. the vertical segments get
longer, since they involve computations over all the previously incorporated obser-
vations y

1:n
.
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Fig. 2. Mixture model example. Histogram, true density p(y |h0 ) of
the simulated observations, dotted line, and the density estimate
p(y |h@ ), solid line, where h@ is the estimate produced by the algorithm,

with N=1000, k=5 and H=10 000.

5·2. Mixtures

Mixture models take the following form:

z
i
~ (k; p1 , . . . , pk ), yi |{zi= l}~P(j

l
) (i=1, . . . , N),

where the z
i
’s are unobserved and independent discrete variables,  (k; p1 , . . . , pk ) stands

for the k-cell multinomial distribution, with probabilities p1 , . . . , pk , and the P (j
l
) ’s are

distinct models belonging to some parametric family {P (j), jµJ}. The aim is to estimate
h= ( p1 , . . . , pk−1 , j1 , . . . , jk ). In our example, we will take P(j

l
)=N(m

l
, s2
l
). A constraint

on the parameters, such as p1< . . .<pk−1 , m1< . . .<mk or s1< . . .<sk , is needed to
identify the model fully.

Since the latent variables z
i
are discrete, the likelihood p(y

n+1:n+p
|y
1:n
, h) is easily com-

putable, as a sum over the possible states of the z
i
. The greatest difficulties with mixture

models arise from the complexity of the posterior distribution p(h |y
1:N

), which often
involves many local modes spread over a high-dimensional space, so that standard algor-
ithms do not converge. Methods such as the Gibbs sampler theoretically converge to the
region of highest probability, but can become trapped in suboptimal modes in practice
(Celeux et al., 2000). It is therefore of interest to see if our algorithm can deal with such
a polymodal target distribution, even when the move steps are performed by a normal
instrumental distribution.

The identifiability constraint was chosen to be m1< . . .<mk . The standard errors s
j

were reparameterised to s
j
= log (s

j
) , in order to lower the posterior distribution tails in

s; see § 4·2. Correct choice of prior distribution is still a sensitive issue in mixture modelling;
see for instance Robert & Mengersen (1999). However, since it was not our aim to address
this problem, we just used a simple yet reasonable prior, given by the uniform distribution
over the compact set corresponding to the following constraints:

p1 , . . . , pk−1�0, p1+ . . .+pk−1∏1,

m:L<m1< . . .<mk<m:U , s1 , . . . , skµ[s:L , s:U],

where m:L , m:U , s:L and s:U are data-based; we took m:L=min (y
i
), m:U=max(y

i
), s:U=

log{(m:U−m:L )/6} and s:L=log(min |y
i
−y
j
|/2).

Our algorithm was applied to N=1000 observations drawn from a Gaussian mixture
model with k=5 components, for which the corresponding parameter

h0= ( p(0)1 , . . . , p(0)4 , m(0)1 , . . . , m(0)5 , s(0)1 , . . . , s(0)5 )

is a vector of 14 dimensions. Figure 2 compares the density p(y |h@ ), where h@=EC
p
N

(h) is
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Fig. 3: Mixture model example. Weighted histograms of the final particle system, H=10 000, with the true
values h0 of the parameters indicated by vertical lines.

the estimate provided by the iterated batch importance sampling algorithm, with the true
density p(y |h

0
). The density estimate clearly fits the data well. Figure 3 gives the weighted

histograms of the resulting particle system, which targets p
N
; for each parameter, the

corresponding true value is identified by a vertical line. The number of particles was set
toH=10 000, which gave a mean squared error of EC

p
N

(h) of the order of 10−5 over 10 runs.
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A

Regularity conditions for T heorem 1

The quantity L
n
(h) refers to the likelihood p(y

1:n
|h )and l

n
(h) to the corresponding loglikelihood.

The observations y1 , . . . , yn are drawn from the distribution corresponding to h=h0 . The following
conditions are assumed to be fulfilled almost surely.

Condition 1. The maximum h@
n

of L
n
(h) exists for each n and converges to h0 as n�2.
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Condition 2. The matrix

S
n
=−q 1n ∂2ln (h@n )∂h ∂h∞ r−1

is positive definite and converges to I(h0 ), the Fisher information matrix evaluated at h0 .

Condition 3. There exists D>0 such that

0<d<D[ lim sup
n�+2 C1n sup

|h−ĥ
n
|>d

{l
n
(h)− l

n
(h@
n
)}D<0.

Condition 4. The function l
n
(h) is thrice continuously differentiable, the quantity

sup
hµH∞
q 1n ∂3ln∂h3 (h)r

is bounded from above in n, for any compact set H∞5H, and the bound does not depend on the
observations.
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