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SUMMARY

We study the classic problem of choosing a prior distribution for a location
parameter 3 = (B1,...,08p) as p grows large. First, we study the stan-
dard “global-local shrinkage” approach, based on scale mixtures of normals.
Two theorems are presented which characterize certain desirable properties
of shrinkage priors for sparse problems. Next, we review some recent results
showing how Lévy processes can be used to generate infinite-dimensional ver-
sions of standard normal scale-mixture priors, along with new priors that
have yet to be seriously studied in the literature. This approach provides
an intuitive framework both for generating new regularization penalties and
shrinkage rules, and for performing asymptotic analysis on existing models.
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1. ONE-GROUP ANSWERS TO TWO-GROUP QUESTIONS

Suppose that (y | B) ~ N(B,02I), where 8 = (81,...,08p) is believed to be sparse.
Many Bayesians, and at least some frequentists, would assume an exchangeable
discrete-mixture prior, 3; ~ w - g(8;) + (1 — w) - do, and report

w- fi1(y)
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where fo(y) = N(y | 0,0%) and fi(y) = [N(y | 8,0%) g(8)dB are the marginal
densities of y under the null and the alternative models, respectively.

Following Efron [2008], we call this the two-groups answer to the two-groups
question. Many of this framework’s asymptotic properties are well understood,
both as the number of means (p) and the number of replicated observations (n)
grow [Johnstone and Silverman, 2004, Scott and Berger, 2006, 2010, Muller et al.,
2006, Bogdan et al., 2008a,b].

w(y) =

Polson is Professor of Econometrics and Statistics at the Chicago Booth School of Business.
Scott is Assistant Professor of Statistics at the University of Texas at Austin.



2 N.G. Polson and J.G. Scott

Ridge Lasso Cauchy Horseshoe
o A o~ o N ~
-+ - 1 — - - -
° ° ° °
- - - -
! | T -
R ¥4 N o~
T T T T T T T T I T T ! T T T 1

Figure 1: The penalty functions associated with some common priors.

One appealing feature of (1) is that it offers a tentative methodological unifica-
tion to the multiple-testing problem: Bayesians can interpret w(y) as the posterior
probability that y is a signal, while frequentists can interpret 1 — w(y) as a local
false-discovery rate. Certainly each school of thought calls for nuisance parame-
ters to be handled in different ways. Yet it is comforting that a Bayesian and a
frequentist can use essentially the same procedure, and report essentially the same
summaries, even if they disagree about their interpretation.

Now consider a sparse regression problem, (y | 8) ~ N(X3, ¢*I). This is super-
ficially similar to the normal-means problem, yet the tentative unification falls apart.
Bayesians are apt to persist in using a two-groups model for the regression parame-
ters. But in machine learning and neoclassical statistics, the dominant approach to
sparse regression is penalized least-squares, where 3 is chosen to minimize

1(B) = \|y—Xﬂ|\2+va(ﬁ?) (2)

for some regularization penalty v (with v usually chosen by cross validation or
marginal maximum likelihood). Under certain choices of 1, some (;’s may collapse
to zero—as in, for example, the lasso penalty of Tibshirani [1996]. Model selection
is thereby recast as optimization. For further discussion on this and other similar
approaches in machine learning, see [Clarke et al., 2009].

As many previous authors have observed, the sum in (2) can be interpreted as
the log posterior density for 8 under a prior 7(8; | v) o exp{—vy(32)}. Hence the
penalized-likelihood solution can be interpreted as a posterior mode (MAP). Within
this class of estimators, there has been widespread interest in normal scale-mixture
priors, a class that includes widely known forms such as the ¢t and the double-
exponential, along with more recent proposals such as the normal/exponential-
gamma, the normal/gamma, the improper normal/Jeffreys, and the horseshoe. Fig-
ure 1 shows the bivariate penalty functions associated with some common priors.

This might be called the one-group answer to the original two-groups question.
Barring the rare case of a true “0-1” loss function, the use of the posterior mode
lacks any Bayesian rationale. It is therefore hard to see the potential for true
methodological unification in the one-group answer to sparse regression, which seems
to dodge the fundamental two-group question of “signal versus noise” altogether.



Sparse Bayesian Regularization and Prediction 3

Nonetheless, the one-group model merits serious attention from Bayesians. For
one thing, sparsity can be construed in a weaker sense, where all of the entries
in B are nonzero, yet most are small compared to a handful of large signals. For
example, 8 may be of small £ norm for some suitably small «, or its entries may
decay in absolute value according to some power law [e.g. Johnstone and Silverman,
2004]. This view of sparsity may appeal to Bayesians who oppose testing point null
hypotheses, and would rather shrink than select.

Second, not even the staunchest of Bayesians can demand zeros when averaging
over models: model-averaged coefficients will be nonzero with probability 1 under
the sampling distribution for y, regardless of 3. This simple fact opens the door
to the one-group model when the goal is estimation or prediction—albeit only after
choosing a one-group model that acts, in some sense, a like a two-groups model.

Finally, the one-group answer can offer substantial computational savings over
full-bore model averaging. For a conjugate normal linear model, the difference
may be small; for a probit model, where marginal likelihoods of different regression
hypotheses cannot be computed in closed form, the difference is substantial, and
the one-group model can be used to approximate the model-averaged solution.

The study of oracle properties provides a unifying framework in the classical
literature, but no such framework exists for Bayesians. In this paper, we hope to
offer a few elements that might form the beginnings of such a framework. First, we
review the standard hierarchical-Bayes formulation of global-local shrinkage rules
for finite dimension p. Our focus here is on advancing some criteria for evaluating
different sparsity priors in terms of their suitability as a default one-group model.
We will then discuss the results of some numerical experiments in Section 3.

We then go on to embed the finite-dimensional in a suitable infinite-dimensional
generalization by identifying 3 with the increments of a discretely observed Lévy
process. This provides a natural setting in which the dimension p grows without
bound. In particular, Theorems 3 and 4, along with the associated discussion,
establish a mapping from Lévy processes to a wide class of penalty functions.

2. GLOBAL-LOCAL SHRINKAGE RULES
2.1. The framework

We will work within the class of global-local scale mixtures of normals:

(Bi | 72X~ N(0,7°A7)
X~ (M)

(7'2,02) ~ 7r(7'2,02).

Each A? is called a local variance component, while 72 is the global variance com-
ponent (or the regularization parameter v in the penalized-likelihood formulation).

Let A = diag(/\%, . Af,). A natural Bayesian approach is to use the posterior
distribution (A | 72,0%,y) to compute the adaptive ridge estimator

B(r) = Eppra o2y { (XX + 207 7 X'y} (3)

An alternative is to specify a prior in the space defined by an orthogonal matrix U
such that, for Z = XU and a = U'B, Z'Z = U' X' XU = D, the diagonal matrix
of eigenvalues of X’X. Then set (a | A, 72%,02) ~ N(0,027>nD~'A). In turn, this
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implies that (8 | A, 7%,02) ~ N(0,0?7>nUD~'AU’). If A = I, the familiar g-prior is
recovered. But if AZ ~ W()\?), then the resulting “generalized g-prior” will adaptively
shrink the principal components of X using the familiar scale-mixture trick.

Either way, one faces the question: which “sparsity” prior to choose? In ap-
proaching the literature on this subject, one encounters a thicket of options, of
which the following list comprises only a limited subset:

Student-t, §; ~ t¢, with an inverse-gamma mixing density. The relevance vector
machine of Tipping [2001] involves computing posterior modes to find sparse
solutions when &, the degrees-of-freedom parameter, goes to 0.

Double-exponential, with an exponential mixing density. See, for example, West
[1987], Carlin and Polson [1991], Pericchi and Smith [1992], Tibshirani [1996],
Park and Casella [2008], and Hans [2009]

Normal/Jeffreys, where p(3;) o |3:|™" [Figueiredo, 2003, Bae and Mallick, 2004].
This improper prior is induced by placing Jeffreys’ prior upon each local
shrinkage term, p(A?) oc 1/AZ.

Strawderman—Berger, which has no analytic form, but can easily be written
as a scale-mixture model: (3; | #:) ~ N(0,x; " — 1), with x; ~ Be(1/2,1)
[Strawderman, 1971, Berger, 1980]. In addition, Johnstone and Silverman
[2004] study this model as a possible choice of g in the two-groups model.

Normal/exponential-gamma, with an exponential mixing density and a second-
level Ga(c, 1) prior for the exponential rate parameter [Griffin and Brown,

2005]. This leads to p(A7) o (1 + )\f)f(cfl).

Normal/gamma and normal/inverse-Gaussian, respectively characterized by
gamma and inverse-Gaussian mixing densities [Caron and Doucet, 2008, Grif-
fin and Brown, 2010].

Horseshoe prior, a special case of a normal/inverted-beta class, where A7 ~
IB(a,b) has an inverted-beta (or “beta-prime”) distribution. Carvalho, Pol-
son, and Scott [2010] study the case where a = b = 1/2, while Polson and Scott
[2009] generalize the horseshoe model to a wider class of variance mixtures
based on power laws.

All of these priors have been nominated, in one way or another, as suitable default
models for sparse vectors. This paper will catalogue still other possibilities for 7(\?).
Navigating this thicket demands a set of criteria to help guide modeling choices.

Our preferred approach is to cajole the one-group model into behaving like a
two-groups model, where

Bi~w-g(B:i)+ (1 —w)-do (4)

for an unknown, common mixing probability w. Assuming g is appropriately heavy-
tailed, the posterior mean for ; under this model is

EB: | w,yi) = w(y:) - yi

with w(y;) as in (1). The posterior means the adapt to the level of sparsity in the
data through shared dependence upon the unknown mixing probability w.
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This effect can most easily be seen if one imagines testing a small number of
signals in the presence of an increasingly large number of noise observations. As
the noise comes to predominate, the posterior distribution for w concentrates near
0, making it increasingly more difficult for most of the means to be large. Yet any
individual y; can still escape the pull of w’s gravity; as long as g is heavy-tailed
enough, the likelihood can still overwhelm the prior probabilities in (1).

The same logic can be applied to the one-group model, where the analogue of w
is 72, the global variance component:

E(ﬁl | )‘sz,yl) - <1 1_’_72)\12) Yi - (5)

To squelch noise and shrink all of the means toward zero, 72 should be small. Yet in
order for large signals to override this effect, \? must be allowed to be quite large.
These considerations point to two guidelines for the sparse one-group model:

(i) w(A\?) should have heavy tails.
(ii) w(7%) should have substantial mass near zero.

In this formulation, the sparseness problem is the mirror image of the outlier problem
[see, for example, West, 1984]. Strong global shrinkage handles the noise; the local
Ai’s act to detect the signals, which are outliers relative to 2.

We first focus on 7(A?). The following two theorems help clarify the role of this
prior in controlling the behavior of a global-local shrinkage rule.

2.2. Tail robustness
Theorem 1 (Tail equivalence). Suppose that (y | 8) ~ N(B8,1), and that w(3) =
JN(B|0,X*)m(A*) dA?. Suppose further that w(A\*) ~ ()\Q)Q_le_”’\QL()\Q) as A\ —
oo for some slowly varying function L such that for every t > 0, L(tx)/L(z) — 1

asx — oo. Letb=114fn >0, and 0 otherwise. Then asy — oo, m(y) = [ N(y |
B, 1)m(8) dB) satisfies, up to the score of the slowly varying function,

d 2 —1
—Inm ~ —\/2n.
i (y) ” V27

Proof. See the Appendix. N

The result is phrased as y — oo, but with a reversal of sign would also apply as
y — —oo. Note the interesting discontinuity between n = 0 and n > 0.
This theorem is useful for pairing with the well known result that

E@ly) =y + %lnm(y),

versions of which appear in Masreliez [1975], Polson [1991], Pericchi and Smith
[1992], and Carvalho et al. [2010]. Applying this result together with Theorem 1,

we see that
Jim {y —B(5 [y)} = v2n,
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implying that any variance mixture where m(\?) has exponential (or lighter) tails
will always shrink observations back to zero by some nondiminishing amount, no
matter how large those observations may be.

This becomes a problem when information is shared across components through
a global variance component 72. Suppose, for example, we have p normal means
and choose a double-exponential prior,

ﬂ(ﬁ)—;_exp{—Z'%'} .

If most of the 3;’s are zero, then 7 must be small. But then for any |y;| that are
large, the exponential mixing density for A? implies that

lyi —E(Bi | i, 7)| = V2/7,

an amount of shrinkage that will grow inappropriately severe as one makes 7 small
enough to squelch the noise. The goal of shrinking the noise toward zero lies in
direct conflict with the equally laudable goal of leaving the large signals unshrunk.

The theorem makes it clear, moreover, that any prior where W(Af) has an ex-
ponential tail will force such a tradeoff in sparse problems. This class of priors
includes both the normal/gamma and normal/inverse-Gaussian. If n = 0, on the
other hand, then 7(A?) has a polynomial tail, and the amount of shrinkage goes
to zero for large signals no matter how small the global variance component. Such
priors with redescending score functions are said to be tail robust.

2.3. Predictive efficiency

The next result relates the behavior of w(A\?) to the resulting model’s efficiency in
reconstructing the true sampling distribution p(y | Bo). It is a direct consequence of
Proposition 4 in Barron [1988] and is a restatement of Lemma 1 in Carvalho et al.
[2010]; we therefore omit the proof, but refer to Clarke and Barron [1990] for more
on the information theory and Bayes asymptotics.

Let 8o to denote the true value of the parameter, psg = p(y | 8) denote a sampling
model with parameter 3, and u(A) denote the prior or posterior measure of some
set A. Also, let L(p1,p2) = Ep, {log(p1/p2)} denote the Kullback—Leibler divergence
of p2 from p1.

Theorem 2 (Kullback—Leibler risk bounds). Let Ac = {3 : L(ps,,p3) < €} C
R denote the Kullback—Leibler information neighborhood of size €, centered at (o.
Let pin(dB) be the posterior distribution under w(3) after observing data y) =
(Y1,---Yn), and let pn = [ pg pn(dB) be the posterior mean estimator.

Suppose that the prior w(03) is information dense at pg,, in the sense that
uw(Ae) > 0 for all € > 0. Then the following bound for R, the Cesaro-average
risk of the Bayes estimator pr, holds for all € > 0:

Bo+ve

RS R 1
Ro= 03 Lot S e o [ 7 x(3)ds.
i=1 o— Ve
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The more mass that the prior 7(3) has in a neighborhood near the true value 3y, the
better this bound will be. For any prior whose density function is bounded above
by C/2 in a neighborhood of So,

Bo++/€
[ a@as < ove,
Bo—+e

where C' < 1 is typical for most priors. On the other hand, if the prior density has a
pole at the true value (8o = 0 being the case of special interest in sparse problems),
then the risk bound can be improved. Under the horseshoe prior, for example,

Ve oo
/ W(ﬁ)dﬁ2ﬁ10g<l+é)+2/ ¥du,
_ € 4

Ve /e u%(1+u)

a bound proven in Carvalho et al. [2010]. This second integral is easily computed
and of order €'/2. Therefore, a prior with a pole at zero can more rapidly recover the
true sampling density in sparse situations. We use the term KL super-efficient to
describe such a prior; for example, the normal/gamma can also be KL super-efficient
for certain choices of hyperparameters.

2.4. The global variance components
We now turn to 7(72, 6%), the prior for the global variance components. An excellent
reference on hyperpriors for variance components can be found in Gelman [2006].
We highlight the main options here, and discuss their role in sparse inference.

The standard conjugate choice for m(72) is the inverse-gamma prior. This is
quite inappropriate for sparse problems, since it artificially forces 72 away from
zero. It should be used only with some extrinsic (i.e. subjective) justification.

At least three possibilities avoid this poor behavior. Jeffreys’ prior is

n(0%, 7)) x o (o +7°) 7,
which despite being improper still yields a proper posterior. (Placing independent
Jeffreys’ priors on o® and 72 does not.) Scott and Berger [2006], meanwhile, use
a “proper Jeffreys” prior that works for model selection, when it is important to
ensure that (72 | 0%) is proper:

J2

-2
(0-2 + 7—2)2 o2 )

7TPJ(O'2,T2) o = (02 + 7'2)

Finally, Gelman [2006] proposes a half-Cauchy prior on the scale: 7 ~ C*(0,0). All
three priors are scaled by the error variance ¢, following Jeffreys [1961].

We are persuaded by the main argument leading to the half-Cauchy prior: that
m(7) evaluates to a positive constant at the origin, and therefore does not overwhelm
the marginal likelihood of the data at the globally sparse solution 7 = 0. Polson
and Scott [2009] also provide an alternative justification for this prior based on its
classical risk properties near the origin. These facts, coupled with its mild quadratic
decay, make the half-Cauchy an appealing default option. There are surely data sets
where it can be beaten, but we have not seen examples where it leads to obviously
silly behavior.
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Fit 1: absolute scaling Fit 2: relative scaling
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Figure 2: Example 1. Left: the posterior for 8 when 7 ~ CT(0,1). Right:
the posterior when 7 ~ C*(0, 7).

There are many reasons to be leery of empirical-Bayes and cross-validated so-
lutions leading to plug-in estimates for o2 and 72. For one thing, the marginal
maximum-likelihood solution for 72 is always in danger of collapsing to the degen-
erate 7 = 0 [Tiao and Tan, 1965]. This danger becomes even more acute in sparse
problems. Moreover, o2 and 72 will typically have an unknown, often nonelliptical
correlation structure that should ideally be averaged over. Indeed, as the following
toy example illustrates, careful handling of uncertainty in the joint distribution for
7 and o can be crucial.

Example 1 Suppose the true model is 8 = 20 and 02 = 1. Two observations are avail-
able: y1 = 19.6 and y2 = 20.4. Two different versions of the horseshoe prior, where
A? ~ IB(1/2,1/2), are entertained. In both cases, o2 is unknown and assigned the nonin-
formative prior 1/02. In Model 1, 7 is assigned a CT(0, 1) prior; in Model 2, 7 is assigned
a CT(0,0) prior, which scales with the unknown error variance.

The posterior distributions for 8 under Models 1 and 2 are shown in Figure 2. In the
first fit using absolute scaling for 7, the posterior is bimodal, with one mode around 20 and
the other around 0. This bimodality is absent in the second fit, where 7 was allowed to
scale relative to o.

A situation with only two observations is highly stylized, to be sure, and yet
the differences between the two fits are still striking. Note that the issue is not
one of failing to condition on o in the prior for 7; the first fit involved plugging
the true value of o into the prior for 7, which is exactly what an empirical-Bayes
analysis aims to accomplish asymptotically. Rather, the issue is one of averaging
over uncertainty about o in estimating the signal-to-noise ratio. Similar phenomena
can be observed with other scale mixtures [c.f. Fan and Berger, 1992].

Another fundamental issue is that the act of marginalizing over hyperparameter
uncertainty changes the implied regularization penalty. Surprisingly, this difference
between Bayesian and plug-in analyses may not disappear even in the limit. Sup-
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pose, for example, that 8; = u + 77, where n; ~ DE(2). Then

m(B | p,7) o< TP exp <i > o1si— ul) ;

=1

leading to the following joint distribution with regularization penalty v:

p P
p(B.y | u,v) oc VP exp {—2; (Z(yz B +vy 18— u) } :
i=1

=1

The plug-in solution is to estimate p and v by cross-validation or marginal
maximum likelihood. Meanwhile, a reasonable fully Bayesian solution, at least in
the known-o? case, is to use the noninformative prior 7(u,7) o< 1/7. This yields a
marginal prior distribution for 3 that depends upon the order statistics 3;) [Uthoff,
1973]. Specifically, define v;(8) =v; = >_%_, |8 — Bj)l- Then

P
mB) = (p-2' 27D w;t (6)
=1
At (j-5) (5 +1-1), j#5 5+
wy =

W 1+ (0= 1) (Brasny — Bws) vi '], G=55+1

Therefore the non-Bayesian estimates 3 using mgp and the Bayesian using nrp:

mep(B|y) o exp {—%iQ <Z(yi - B+t Z [Bi — ﬂl) } (7)

1 .\ (p—2)! 1
mre(B|y) o exp {W (Z(yz — Bi) ) + ?log (Z:ZI wz(ﬁ))} (8)

=1

The former is the traditional double-exponential prior, while the latter prior exhibits
a rather complicated dependence upon the order statistics of the 3;’s (which do not
appear in the plug-in expression). It is by no means certain that the two procedures
will reach similar answers asymptotically, since this difference in functional form
persists for all p [see, for example, Scott and Berger, 2010].

The double-exponential prior coupled with the noninformative prior on p and 7
is just one example where the marginalization in (6) is analytically tractable. But
it serves to convey the essence of the problem, which is quite general. The Bayes
and plug-in approaches for estimating 7 imply fundamentally different regularization
penalties for 3, regardless of whether 3 is estimated by the mean or the mode, and
regardless of whether marginal maximum likelihood or cross-validation is used.

Neither prior is wrong per se, but the stark difference between (7) and (8) is
interesting in its own right, and also calls into question the extent to which the
plug-in analysis can approximate the fully Bayesian one. While some practitioners
may have different goals for empirical Bayes or cross-validation, such comparison is
at least reasonable. Many Bayesians use empirical-Bayes as a computational simpli-
fication, and many non-Bayesians appeal to complete-class theorems that rely upon
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an empirical-Bayes procedure’s asymptotic correspondence with a fully Bayesian
procedure. Hence questions about where the two approaches agree, and where they
disagree, is of interest both to Bayesians and non-Bayesians.

For all these reasons we prefer the Rao-Blackwellized estimator of 3,

ET\y{B(T2)} = ET\y{EA\Tvy(ﬁ ly, 7, M)},

which Bayes’ theorem shows to be equivalent to the posterior mean after 7 has
simply been marginalized away a priori.

One approach for estimating v = 1/7 that arises repeatedly in the classical
literature is to set ¥ = y/logp, a choice for which interesting asymptotic results
obtain. See, for example, Candes and Tao [2007] and Bickel et al. [2009)].

This choice can be interpreted as a form of Bonferroni-like correction. Since

the choice of v = y/log p implies that

p
P(\ﬂi| < /logp for all z) = (1_%) ~e

Of course, for this choice, all information flow across the components is lost. We con-
jecture that the Rao-Blackwellized estimator where 7 ~ CT{0, o (logp)~*/?} could
allow borrowing of information while still clearing the same asymptotic hurdles.

3. NUMERICAL EXPERIMENTS

We have examined a global-local framework for understanding why certain sparsity
priors make better default one-group models than others. We now provide numerical
evidence that the gains in performance for a prior motivated by this framework can
often be large. Most intriguingly, we show that shrinkage rules that are both tail
robust and super-efficient corresponds quite closely to the answers one would get
if one pursued a more familiar Bayesian approach using a two-groups model. This
“BMA mimicry” can result in a lower computational burden than full Bayesian
model averaging.

3.1. Regularized regression

In our first example, we test the performance of the one-group model against a
highly regarded two-groups model. We simulated 500 data sets from the following
sparse model with ¢-distributed signals, n = 60, and p = 40:

(y18) ~ N(XB,I)
Bjlw) ~ w-tz+(1—w)-d
w ~ Be(1,4),

reflecting signals that were 80% sparse, on average. The elements of the design
matrices were independent standard-normal draws.

We then compared three approaches for estimating 3: (1) Bayesian model av-
eraging under the two-groups model, assuming Zellner-Siow priors for each unique
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Table 1: Mean sum of squared errors in estimation and prediction for 500
sparse-regression data sets.

BMA HS Lasso-CV
Prediction SSE 89.2 92.2 128.9
Estimation SSE 0.9 0.8 8.6

Electro—cardiogram Data

Millivolts

-1.0 -05 0.0
1

T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 12 1.4

Time, seconds

Figure 3: Electro-cardiogram data used as the “true” function f in the wavelet
de-noising experiment.

regression model [Zellner and Siow, 1980]; (2) lasso-CV, where v was chosen us-
ing leave-one-out cross-validation; and (3) the horseshoe prior with 7 ~ C*(0, o).
(Through this section, we use the horseshoe prior, since it is a well-studied example
of a prior that is both tail robust and super-efficient.) We measured performance by
squared error in estimating 3, and squared error in predicting new values of y out
of sample. To fit the lasso and horseshoe models, we used the R package monomvn,
described by Gramacy and Pantaleo [2010].

As these results show, both BMA and the horseshoe prior systematically out-
performed the lasso, without either one enjoying a noticeable advantage.

3.2. Wawvelet de-noising

Our second data set (Figure 3) contains 256 electro-cardiogram millivolt readings
of one beat of a normal human heart rhythm sampled at 180 Hz, and is available in
the R package wavelets. The readings have been re-scaled to have a mean of zero,
and their standard deviation is approximately 0.2.

We took these data points to represent the “true” function f sampled at equi-
spaced intervals, and simulated noisy realizations of f by setting v, = fi + €,
e; ~ N(0,0?) for i = 1...,256. We constructed 100 fake data sets each for three
different noise levels: ¢ = 0.1, 0 = 0.2, and o0 = 0.4. Most of the quite standard
details concerning Bayes and empirical-Bayes inference in the wavelet domain are
omitted here, including how empirical wavelet coefficients should be scaled. For a
detailed discussion, see Clyde and George [2000], whose framework we follow.



12 N.G. Polson and J.G. Scott

Table 2: Results for the wavelet-denoising experiment under three different
noise levels and two different loss functions. The table entries are the average
loss across 100 simulated data sets. DWT: discrete wavelet transform. JS:
Johnstone/Silverman. HS: horseshoe prior

oc=0.1 =02 oc=04
Procedure | (%, 2o 2, 03, 2
DWT | 204 20.5 | 81.9 82.0 | 328.0 328.2
JS | 136 13.7|36.3 36.4 | 871 873
HS | 93 93267 28| 724 726

Specifically, let d;i represent the kth coeflicient of the discrete wavelet transform
(DWT) at resolution level j, appropriately re-scaled as per Clyde and George [2000].
We assume that these coeflicients are observed with error according to d;r = Bjx +
vk, place a hypergeometric-beta scale-mixture prior on (§;, and estimate ;i by
the posterior mean. The DWT of the ECG data are assumed to represent the true
Bjx’s, while the DWT of the noisy realizations y are treated as raw data.

We assessed the performance of the horseshoe one-group model against two
benchmarks: the discrete wavelet transform, and the two-groups model for normal
means described by Johnstone and Silverman [2004]. We measure the performance
of an estimator by quadratic loss in both the wavelet domain and the time domain:
Gy (8) = Zj >ou Bk — ﬁjk)Q, and (3(8) = >oi(fi — fi)?, where f is the inverse
wavelet transform of the estimated coefficients 3.

As Table 2 shows, the horseshoe prior consistently beat the Johnstone/Silverman
procedure, which is the recognized gold standard in the literature on modeling sparse
wavelet coefficients. This echoes the results of Scott [2009], who finds the same
pattern to hold when the horseshoe prior and the Johnstone/Silverman method are
both used to fit a sparse needlet basis to spherical data.

4. PRIORS FROM LEVY PROCESSES
4.1. Penalty functions and scale mixtures

We have phrased the problem of sparse inference in the one-group model as one of
estimating a vector of variances: ()3, ..., )\12,, 72 | y). The analogy with a stochastic
volatility model is instructive, and permits further generalization.

We begin with two simple criteria for characterizing penalty functions—that is,
functions w(B3, v) such that the minimum of

18) = lly = XB|* +w(B,v)
defines an w-penalized least-squares estimator for a global penalty parameter v > 0.

Deﬁnitio2n 1 (Separability). A penalty function w(B,v) is separable if w(B,v) =
=1 (B, v).
=1 1
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Definition 2 (Global linearity). A penalty function w(B,v) is globally linear if
w(B,v) = v (B).

Separable penalty functions naturally correspond to exchangeable priors. A
penalty function like (2) is both separable and globally linear. These definitions
provide the context for a simple theorem from Polson and Scott [2010] that allows
us to reinterpret some classic results on normal scale mixtures.

Theorem 3 (Subordinators and penalty functions). Let Ts, s € [0,v], be a
subordinator—that is, a nondecreasing, pure-jump Lévy process—with Lévy measure
u(dz). Then the cumulant-generating function of Ts corresponds to a separable,
globally linear penalty function

w(B,v) = u_ZW?%

via the Laplace exponent of the subordinator Ts,

w(t) = / (1~ exp(ta)}u(dr)

Suppose in addition that [° T, 2 9(Ts)dTs < oo, where g(Ts) is the marginal

density of the subordinator at time s. Then the w-penalized least-squares solution is
the posterior mode under an exchangeable normal scale-mixture prior whose mizing
measure is expressible in terms of the density of the subordinator:

p(B:) ox exp{—(52)} = / TN 0,70 (T 2g(T)} dT

Proof. See Polson and Scott [2010]. 0

Theorem 3 is useful for several reasons. First, it provides a potentially rich source
of new shrinkage rules generated from separable, globally linear penalty functions,
since any pure-jump Lévy process with Lévy measure concentrated on RT corre-
sponds to such a rule. The behavior of such a shrinkage rule, moreover, can be
interpreted in terms of properties of the underlying Lévy measure.

Second, it provides an elegant method for proving that certain distributions—
namely, those whose log densities can be identified as the Laplace exponent of some
known subordinator—are normal scale mixtures. This naturally leads to the stan-
dard generalized-ridge-regression interpretation of most penalty functions. The the-
orem, for example, suggests a single-line proof of the widely known result that
powered-exponential priors are normal scale mixtures [West, 1987].

Example 2 (Powered-exponential priors).  Suppose logp(8;) = —v|Bi|*. Equiva-
lently, this is —V(ﬂ?)"‘/Q, which is easily recognized as the cumulant generating function,
evaluated at ,82.2, of a stable subordinator T, with index o/2.

The Stable(1/2) is equivalent to an inverse-Gaussian distribution, meaning that the
lasso can be characterized by an inverse-Gaussian subordinator on a precision scale.
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Third, the theorem shows how, for a wide class of priors 7(v), marginalizing over
v can be done via a simple argument appealing to moment-generating functions.
This leaves no further hyperparameters to be estimated, as shown by the following
theorem, proven in Polson and Scott [2010].

Theorem 4 (Rao-Blackwellized penalty functions). Suppose

exp{—uZw(ﬁ?)H , (9)

m(B) o< Ey

where the expectation is with respect to w(v) defined by the equivalence v 2 Ty, given
a subordinator Ts with Lévy measure p(dx). Then

—X {Zw(ﬁf)}
/0 "1~ explta) u(de) |

log m(8)

x(?)

a composition of the global and local Laplace exponents.

Recall that ¥ = 1/7 in the conditionally normal representation for m(3). Notice
that, when the data are allowed to inform the choice of v in a principled Bayesian
way, the mixture regularization penalty loses its global linearity, and the prior loses
its structure of conditional independence.

An example helps to demonstrate the theorem’s utility.

Example 3 (a-stable mixing). Suppose logp(8; | v) = —v|Bi|, where v is assumed
equal in distribution to a standard a-stable subordinator, 0 < a < 1, observed at time
s = 1. Then ¢(-) is the square-root function, and x(¢) = [¢|*. Therefore the mixture

penalty function is
P P o
3sven) = () -
=1 =1

As before, we see how global mixing changes the functional form of the prior; for
example, as a — 0, the density becomes more peaked around zero. A strange
situation of idempotence results from the limiting case as o — 1: the limit of this
mixture penalty is the same as the original penalty with no global parameter.

One can also attempt to run Theorem 4 in the opposite direction, by recognizing
the underlying combination of global and local priors corresponding to a penalty
function that takes the compositional form x {>-7_, ¥(537)}.

4.2. Shrinkage priors as time changes of Brownian motion

Finally and most importantly, these two theorems are useful as allegory. Many
shrinkage priors do not correspond to separable, globally linear penalty functions,
and these priors therefore cannot easily be characterized along the lines of Theorem
3 using a subordinator on the precision scale. Nonetheless, the theorem suggests
interesting connections between time-changed Brownian motion and shrinkage rules.
These connections merit deeper exploration.
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A key fact about subordinators is that they are infinitely divisible. Suppose that,
as above, we identify the local precisions of p different 3;’s with the increments of T',
a subordinator, observed on a regular grid. The sum of the p local precisions—an
easily interpretable aggregate feature of the 3 sequence—can then be described a
priori in terms of the behavior of a single random variable T'.

Now suppose we want to consider 2p (;’s instead, while retaining the same
aggregate features of the 3 sequence (now twice as long). This changes requires
only that we observe the increments of the original subordinator on a finer grid.
Such a scenario is less far-fetched than it sounds; in genomic studies, for example,
there is only so much physiological variation to explain, but many successively finer
scales of analysis on which to explain it.

From an analytical (and aesthetic) standpoint, the nicest subordinators are the
self-similar ones. Self-similar processes have the same distributional form no matter
the scale: inverse-Gaussian processes, for example, have inverse-Gaussian incre-
ments, no matter how finely one slices them.

The appeal of self-similarity is that we may specify some aggregate feature of
the B sequence; keep this feature (or its prior) fixed as p grows; and allow the
priors for each 3; to, in some sense, take care of themselves without our having
to worry about their functional form. Put another way: self-similarity ensures
that, as p grows and we divide the subordinator into arbitrarily fine increments,
the probabilistic structure of the local precisions remains the same—a useful fact if
one wishes to contemplate, for example, certain asymptotic features of the double-
exponential model.

Formally, let W, be a standard Wiener process, and define a Lévy process
Zs = Wr,, where T is a subordinator that defines a random, irregular time scale.
The process Z; is known as subordinated Brownian motion. Its increments will be
normal-variance mixtures, with local variances given by the corresponding incre-
ments of the subordinator T%.

The normal/gamma is an example of a prior that divides naturally in this way.
If T. ~ Ga(as,b) is a gamma subordinator, then its increments follow a gamma
distribution at all scales, and one gets normal-gamma 3;’s from the increments of
Wr, no matter how finely we slice Ts. Slightly abusing notation, we have

Z Ga(a/p,b) 2 Ga(a, b)

for all p. Here g is the identity mapping from RT to RT.

The normal/inverse-Gaussian distribution has the same property of closure un-
der summation [see, e.g. Barndorff-Nielsen, 1997] and will therefore also be self-
similar on the variance scale. Both the normal/inverse-Gaussian and the nor-
mal/gamma are examples of self-decomposable mixtures from the class of generalized
hyperbolic (GH) distributions [Barndorfl-Nielsen, 1978]. The mixing distribution of
a GH distribution is characterized by three parameters (a € R,b > 0,¢ > 0):

b)e/? _ 1

2= O Gzamt o I Lz ol

p(AV) 2K (/b0) (AD) py—5(b/ )

where K,(-) is a modified Bessel function. The resulting mixtures have semi-heavy
tails, and so will not yield redescending score functions.
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Table 3: A phylogeny of selected normal variance mixtures based on self-
decomposable mixing distributions. TR: indicates whether the prior can be
tail-robust for certain choices of hyperparameters. SE: indicates whether the
prior can be KL super-efficient for certain choices of hyperparameters.

Class Sub-class Examples and comments TR SE
Generalized z-distributions Corresponds to § = 1/2; well N N
z-distributions known examples include the
(0,0, 8,0, 1) log F' and logistic distributions.
Meixner Used in mathematical finance; N N
can be represented as normal
variance mixtures.
Variance mix- Normal/inverted- Mixing distribution can be rep- Y Y
tures based on beta resented as an exponentiated z
power laws random variable. Examples in-
clude the horseshoe prior and
Strawderman prior.
Normal/Lamperti Mixing distribution can be rep- Y Y
resented as a ratio of positive
stable random variables.
Normal/ Special case of the Y N
Exponential- normal/inverted-beta. Simi-
Gamma lar to the normal/Pareto, which
is also known as a Type-II
modulated normal distribution.
Generalized hy- Normal/inverse- Infinite-variation process; corre- N N
perbolic  distri- Gaussian sponds to a = —1/2.
butions (a, b, ¢)
Normal/gamma Also known as the variance- N Y
gamma process, widely used in
finance; corresponds to b = 0,
a = ¢ > 0; related to the Dirich-
let process via the gamma sub-
ordinator.
Variance mix- Normal/positive-  Related to the Pitman-Yor pro- Y Y
tures based on stable cess via mixtures of alpha-stable
stable processes subordinators.
Normal/tempered Widely used in mathematical fi- N N

stable

nance as the CGMY model.
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The horseshoe prior of Carvalho et al. [2010] provides an example that does not
submit so readily to either of these approaches. In the usual hierarchical represen-
tation of this prior, one specifies a standard half-Cauchy distribution for the local
scales: \; ~ CT(0,1). This corresponds to

p() o W) T2+ A7,

an inverted-beta distribution denoted IB(1/2,1/2).

This generalizes to the wider class of normal/inverted-beta mixtures [Polson and
Scott, 2009], where A\? ~ IB(a,b). These mixtures satisfy the weaker property of
being self-decomposable: if A7 ~ IB(a,b), then for every 0 < ¢ < 1, there exists a
random variable e, independent of A\? such that A\? = cA? + . in distribution.

Self-decomposability follows from the fact that the inverted-beta distribution is
in Thorin’s class of generalized gamma convolutions, which are to the gamma dis-
tribution what Lévy processes are to the Poisson. If p(z) is a generalized gamma
convolution (hereafter GGC), then its moment-generating function can be repre-

sented as
M(t) = exp {at + /Ooo log <ﬁ) 'y(dx)} ;

where a = supy ..y{2 : p(z) = 0}. The measure y(dz) is known as the Thorin mea-
sure, and must satisfy some basic integrability conditions similar to those required
of a Lévy measure.

Since the gamma distribution is also a Poisson mixture, the Thorin measure is
related to the Lévy measure by the Laplace transform

u(da) = % [ exp(-zo)(dz).

We recognize this as the Lévy measure of a Cauchy process, up to the tempering
function h(z) = [ exp(—zz)7y(dz). Hence the Thorin measure controls the degree of
tempering in a straightforward way.

All GGCs are continuous and unimodal, and all generate self-decomposable
normal-variance mixtures with known (though possibly quite complicated) Lévy
representations. The density function of a GGC can be represented as

p(z) = Ca""h(z),

where K is the total Thorin measure, and h(z) is completely monotone; up to
some further regularity conditions on h, the converse is also true. The class of nor-
mal/GGC mixtures seems to contain virtually all commonly used shrinkage priors,
but is much more general.

We omit the proof of the fact that the inverted-beta distribution is a GGC,
which is surprisingly involved; see Example 3.1 in Bondesson [1990]. The upshot of
this result, however, is that the horseshoe prior can be represented as subordinated
Brownian motion: the Lévy measure of the inverted-beta is concentrated on R,
and the corresponding independent-increments process therefore increases only by
positive jumps.

Even still, this proof is not constructive, and is of no use whatsoever for actually
computing the distribution of the increments. The difficulty becomes plain upon
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inspecting the characteristic function of an inverted-beta distribution:

#(t) = % Ula,1— b, —it),

where U(z,y, ) is a confluent hypergeometric function (Kummer function of the
second kind). We are not aware of any applicable results for powers of Kummer
functions, making it difficult to compute the distribution of sums of inverted-beta
random variables.

Representing the horseshoe prior in terms of the increments of a self-similar Lévy
process would therefore seem out of reach. But only, it turns out, on the variance
scale. If instead we move to a log-variance scale, a self-similar representation can
indeed be found, thereby clarifying how the asymptotics of normal/inverted-beta
class can be understood intuitively. This self-similar representation is based on the
theory of z-distributions.

Table 3 shows the stochastic-process version of many common priors. For details,
we refer the reader to Polson and Scott [2010].

5. WHY LEVY PROCESSES?

5.1. Some further motivation

1

These models all are special cases of the following general form. Let A = p~*, and

suppose that
D
Bi = Zjn — Zj—1)a

for some arbitrary Lévy process Zs having Lévy measure p(dx). Then upon observ-
ingy = (y1,...,yp) with y; ~ N(8i,0?), as in the normal-means problem, we may
identify y with the increments of an interlacing process:

d
Yy = Xia — X@—1)a

where X; = Z, + oW, a superposition of signals (a Lévy process Z,) and noise (a
scaled Wiener process Wy).

Even though the use of Lévy processes as prior distributions has a well estab-
lished tradition in Bayesian statistics [e.g. Wolpert et al., 2003], our framework may
at first seem overly complex. But we find that it illuminates several aspects of the
normal-means problem, and believe it to be worth pursuing.

All of our reasons for thinking so can be subsumed under one basic principle:
that in the absence of strong prior information, inferences within the one-group
framework should correspond to actual Bayesian models, using reasonable default
priors and loss functions. This principle seems almost banal, yet it has serious con-
sequences for the relevance of an estimator’s oracle properties. Berger and Pericchi
[2001] express this view eloquently:

One of the primary reasons that we . . . are Bayesians is that we believe that
the best discriminator between procedures is study of the prior distribution
giving rise to the procedures. Insights obtained from studying overall prop-
erties of procedures (e.g. consistency) are enormously crude in comparison
(at least in parametric problems, where such properties follow automatically
once one has established correspondence of the procedure with a real Bayesian
procedure). Moreover, we believe that one of the best ways of studying any
biases in a procedure is by examining the corresponding prior for biases.
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To which we would add only that a procedure’s implied loss function can be illumi-
nating, as well.

Theorems 3 and 4 provide the machinery for reverse-engineering the global-local
Bayesian models implied by certain penalty functions. The important question is
not “How does this penalty function behave?” Rather, it is “What are we assuming
about B in using this penalty function?”

To illustrate the point, observe that the familiar two-groups model arises as a
special case of the general Lévy-process framework: namely, when the Lévy measure
1 is that of a compound Poisson process with jump density g and unknown jump
rate r. With probability 1, process will have a finite number of jumps on any finite
interval. These jumps correspond to the nonzero signals in 3; all other increments
of the Z process will be zero.

The discrete-mixture prior is an example of a finite-activity process where the
total Lévy measure is finite, but one could also use an infinite-activity process,
corresponding to g being merely sigma-finite. Intuitively, this would correspond to
a situation in which the underlying process had an infinite number of small jumps—a
natural asymptotic description of a “weakly sparse” vector.

The one-group model and the two-groups model can therefore be subsumed into
this single framework, which seems very appealing. Indeed, by the Lévy-Khinchine
theorem, any model that preserves the conditional-independence property of the 3;’s
will fall into this framework, since any stationary cadlag process with independent
increments is completely characterized by its Lévy measure.

By casting the finite-dimensional problem in terms of the marginal distributions
of a suitable infinite-dimensional problem, the Lévy process view provides an intu-
itive framework for asymptotic calculations. Such analysis can be done under one,
or both, of two assumptions: that we observe the process longer, or that we observe
it on an ever finer grid. Each scenario corresponds quite naturally to a different
assumption about how the data’s signal-to-noise ratio behaves asymptotically.

From a Bayesian perspective, asymptotic analysis is useful less as a validation
step and more as a tool for illuminating what we may, in principle, discover about
the underlying “signal” process Zs on the basis of observing Xs.

For example, it is impossible to recover the entire Lévy measure p of a discretely
observed process that has both a diffusion and a jump component, even as the dis-
cretization becomes arbitrarily fine [Ait-Sahalia and Jacod, 2009]. This corresponds
to the claim that it is impossible to learn all distributional features of the underlying
3 sequence, even with a huge amount of data.

It is, however, possible to learn certain vague features of the prior, such as its
behavior near zero or its tail weight, in the same way that it is possible to learn
a higher-level variance component. These are knowable unknowns. Other features,
however, are unlearnable in principle, and hence must truly be set in stone by a
prior.

Asymptotic investigations, therefore, can help us know where to stop in the
“turtles all the way down” approach to hyperparameter specification: first mix over
the first-level hyperparameters, then over the second-level, then over the third, and
so forth. These are important considerations; if there is one thing our study has
clarified, it is the lack of consensus in the literature about what default prior to use
for such a basic statistical problem.

We have phrased the problem as one of recovering the 3 sequence. But it is also
possible to phrase the problem strictly in terms of claims about observables. Here,
the claim would be that, given some Lévy measure, the data look like the increments
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of the corresponding stationary, independent-increments process with Lévy triple
{A, B, u(dx)}. One can describe the Lévy measure of this process without ever
appealing to the notion of a parameter; any subsequent interpretation of the non-
Brownian jumps of this process as “signals” is purely optional.

There are also intimate connections between this view of shrinkage and non-
parametric Bayesian analysis, in which the goal is to construct distributions over
the weights in a countably infinite mixture model. These connections, explored by
Kingman [1975] in the context of gamma subordinators, raise the possibility that
existing work on regularization can lead to novel priors for sparse infinite mixtures
using the normalized jumps of an appropriate subordinator, generalizing the vener-
able Dirichlet process in practically fruitful ways.

5.2. Characterizing the signal process

One natural way of understanding the sparsity of an infinite 8 sequence is through
its Blumenthal-Getoor (or sparsity) index, defined as

a:inf{(SZO:/ x‘s,u(dm)<oo},
l2l<1

where u(dz) is the Lévy measure giving rise to increments ;. This is equal to the
index of stability for an alpha-stable process, and provides a straightforward notion
of sparsity, since it measures the activity of the small jumps in the process. For a
compound Poisson process, « = 0. Estimating this index is equivalent to performing
model selection for the prior 7(85;).

To understand the classical approach for estimating the sparsity index, it helps
first to imagine a “noiseless” version of the normal-means problem, where 62 = 0.
Suppose there are two possible models. Under Model 1, the signals arise from the
increments of a tempered stable process Zs having Lévy measure

1
pldx) = Dexp(*“ﬂ)m :

Under this model, the log arrival-rate of jumps is linear in jump size and the log of
jump size:

log u(dz) = —blz| — (1 + o) log |z| + log D .

Under Model 2, the signals are from a compound Poisson process with Gaussian
jumps. Then the log arrival rate is linear in size and the square of size:

log p(dz) = —blz| — clz|* + K .

Hence the model-choice problem for the Lévy measure—that is, the problem of
choosing between two possible priors for the signals—boils down to a choice of
which linear model best describes the log arrival rate of jumps.

A crude non-Bayesian approach is to bin up the jumps into disjoint intervals
defined by their size; compute arrival rates by counting how many jumps fall into
each bin; and regress log arrival rate on jump size, plus either log jump size or
the square of jump size. If one linear model fits the arrival rates better than the
other, the corresponding Lévy measure and sparsity index are supported. This
approach, and similar ones, are well studied in mathematical finance, where the
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need to account for jumps in the movement of asset prices has long been recognized
[e.g. Eraker et al., 2002].

Remarkably, such an approach for recovering the sparsity index still works even
in the presence of a Brownian component. This runs contrary to all intuition: an
infinite number of arbitrarily small jumps would seem impossible to separate from
Gaussian noise, which itself can be thought of as an aggregation of tiny, independent
effects. Nonetheless, disentanglement is possible. For example, Ait-Sahalia and
Jacod [2009] define the power-variation estimator of a process X, s € [0,77], as

T/A,
. . 5
a=inf { lim E Xin, — X@-
3 Ay 4 - | iAp (% 1)Ap| 9
i—

and are able to estimate this quantity consistently as A, — 0. This recovers the
sparsity index of the underlying jump process.

Such estimators are typically quite inefficient, and make use of asymptotic ar-
guments that are likely anathema to most Bayesians. They do, however, point
the way to one essential fact: that there is information in the data, however poor,
about the sparsity of the signal process. The asymptotic assumptions, moreover,
are quite similar to the assumptions made by, for example, Bogdan et al. [2008a] in
their characterization of the limiting performance of the Bayesian two-groups model.
The door would seem open for a formal Bayesian treatment of the problem.
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APPENDIX

Proof of Theorem 1
Write the likelihood as

(y | z) ~N(0,2) where z =1+ > ~7(z)

where z = 14 A? with induced prior 7(2). If 7(\?) satisfies the tail condition of the
theorem, then so will 7(z):

m(z) ~ 2" 'e T L(2) as z — o0
Then the marginal likelihood of the observation y is a scale mixture of normals,

y2

m(y) = /1OO \/%efﬁﬂ(z) dz.

The rest of the proof follows Theorem 6.1 of Barndorff-Nielsen et al. [1982], which

shows that | |2 ) (2)
y|** Ly if n=0
m ~ a—1 — .
@~ { ez it 9> 0

as y — 00. The form of the score function then follows immediately.



