$$X_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad X_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$X_3 = \begin{bmatrix} 2 \\ 3 \\ 3 \end{bmatrix}$$

· let M the set of all linear combinations of X1, X2, X3

· {X1, X2, X3}: spanning set

. We can easily check $3x_1 - x_2 = x_3 \Rightarrow x_1, x_2, x_3$ linearly defi

Any two of X1, X2d X3 form a basis for the space M

a lu conteins vectors with the form [b.], a, b \in IR

† Def [Rank of a subspace]: The *rank* of a subspace \mathcal{M} is the number of elements in a basis for \mathcal{M} . The rank is written $rank(\mathcal{M})$, $r(\mathcal{M})$ or $dim(\mathcal{M})$.

If **A** is a $m \times n$ matrix, the rank of $C(\mathbf{A})$ is called the rank of **A** and is written as $r(\mathbf{A})$.

Result: $r(C(\mathbf{A})) = dim(C(\mathbf{A})) = r(\mathbf{A})$: # of linearly independent columns of \mathbf{A} (=# of basis vectors for $C(\mathbf{A})$).

 \Rightarrow When $r(\mathbf{X}) = r$, the r linearly independent columns of \mathbf{X} span the r-dimensional estimation space $C(\mathbf{X})$

OR

consider
$$A = \begin{bmatrix} 1 & 2 & 7 \\ 1 & 0 & 3 \\ 1 & 0 & 3 \end{bmatrix}$$

$$r(A) = 2 = r(e(A))$$

• **Q:** How to find a solution $\hat{\beta}$ if $r(\mathbf{X}) = r(\mathbf{X}^T \mathbf{X}) < p$ (singular)?

Here is our strategy!

- \triangle There is no unique solution for β when $r(\mathbf{X}) = r(\mathbf{X}^T\mathbf{X}) < p$.
- \triangle Instead we will find $\hat{\mathbf{y}} \in C(\mathbf{X})$ closest to \mathbf{y} in the Euclidean distance.
- \triangle Then we will find $\hat{oldsymbol{eta}}$ such that $\hat{oldsymbol{y}} = oldsymbol{X} \hat{oldsymbol{eta}}.$
- Q: How to find such \hat{y} ?

We will consider the perpendicular projection matrix!

$$\begin{bmatrix} x_{21} \\ x_{21} \\ x_{31} \end{bmatrix} \begin{bmatrix} x_{22} \\ x_{32} \end{bmatrix}$$

$$\begin{bmatrix} x_{21} \\ x_{32} \end{bmatrix} = \begin{bmatrix} x_{22} \\ x_{32} \end{bmatrix} + \begin{bmatrix} x_{21} \\ x_{22} \\ x_{32} \end{bmatrix} + \begin{bmatrix} x_{21} \\ x_{22} \\ x_{32} \end{bmatrix}$$

- \bigstar Recall the linear models: $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$ and $\mathbf{X}\boldsymbol{\beta} \in C(\mathbf{X})$.
- \bigstar Suppose $\hat{\beta}$ is a solution for the NEs (that is, minimize $||\mathbf{y} \mathbf{X}\boldsymbol{\beta}||^2$).
- ightarrow Let fitted value $\hat{\mathbf{y}} = \mathbf{X}\hat{oldsymbol{eta}} \in \mathcal{C}(\mathbf{X})$ and residual $\hat{\mathbf{e}} = \mathbf{y} \hat{\mathbf{y}}$.

Q: Where does ê lie?

† Def [Nullsapce]: The null space of a $m \times n$ matrix A, denoted by $\mathcal{N}(\mathbf{A})$,

$$\mathcal{N}(\mathsf{A}) = \{ \mathsf{y} \mid \mathsf{A}\mathsf{y} = \mathsf{0} \} \subset \mathbb{R}^n.$$

 \clubsuit Th: If **A** is $m \times n$ and $r(\mathbf{A}) = r$, then the rank of the null space of **A** is n-r, that is,

$$dim(C(\mathbf{A})) + dim(\mathcal{N}(\mathbf{A})) = n.$$

$$ex$$
 let $A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ -1 & 1 & -3 \\ 1 & 2 & 6 \end{bmatrix}$ Let S find $N(A)$

$$Ay = 0 \Rightarrow y_1 + y_2 + y_3 = 0$$

$$2y_1 + 2y_2 + 2y_3 = 0 \Rightarrow -4y_2 + 2y_2 + 2y_2 = 0$$

$$2y_1 + 2y_2 + 2y_3 = 0 \Rightarrow 2y_2 + y_2 - 3y_3 = 0 \Rightarrow 33\pi_0 y_2$$

$$y_1 + y_2 + y_3 + y_4 = 0 \Rightarrow y_1 = -2y_2 \Rightarrow 32/61$$

$$y_1 + 2y_2 + 0 = 0 \Rightarrow y_1 = -2y_2 \Rightarrow 32/61$$

$$N(A) = \begin{cases} C \begin{bmatrix} -2 \\ 1 \end{bmatrix}, C \in \mathbb{R}^3 \end{cases} \Rightarrow \widehat{D}(N(A)) = 1$$

$$A = \begin{cases} C \begin{bmatrix} -2 \\ 1 \end{bmatrix}, C \in \mathbb{R}^3 \end{cases} \Rightarrow \dim(C(A)) = 2$$

★ Result: Recall the NEs:

$$\mathbf{X}^T \mathbf{X} \boldsymbol{\beta} = \mathbf{X}^T \mathbf{y}.$$

Suppose $\hat{\beta}$ is a solution for the NEs.

•
$$\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}} \in C(\mathbf{X}).$$

$$\bullet \underbrace{\mathbf{X}^{T}(\mathbf{y} - \widehat{\mathbf{X}\hat{\boldsymbol{\beta}}})^{\widehat{\boldsymbol{\beta}}}}_{\mathbf{X}^{T}} \mathbf{\hat{e}} = 0 \Rightarrow \hat{\mathbf{e}} \in \mathcal{N}(\mathbf{X}^{T})$$

$$\stackrel{\wedge}{\times^{T}} \mathbf{y} - \stackrel{\wedge}{\times^{T}} \times \stackrel{\wedge}{\boldsymbol{\beta}} = 0$$

$$\stackrel{\wedge}{\times^{T}} \mathbf{\hat{g}} = 0 \Rightarrow \hat{\mathbf{e}} \in \mathcal{N}(\mathbf{X}^{T})$$

$$\stackrel{\wedge}{\times^{T}} \mathbf{\hat{g}} = 0 \Rightarrow \hat{\mathbf{e}} \in \mathcal{N}(\mathbf{X}^{T})$$

Q: What is the relationship between $C(\mathbf{X})$ and $\mathcal{N}(\mathbf{X}^T)$?

† Def [Orthogonal]:

- ▶ (Inner Product) The *inner product* between two vectors, \mathbf{x} and \mathbf{y} is $\mathbf{x}^T \mathbf{y}$
- ▶ (Orthogonal Vectors) Two vectors \mathbf{x} and \mathbf{y} are orthogonal (or perpendicular) (written $\mathbf{x} \perp \mathbf{y}$) if $\mathbf{x}^T \mathbf{y} = 0$.
- ▶ (Orthogonal Spaces) Two subspaces \mathcal{M}_1 and \mathcal{M}_2 are orthogonal if $\mathbf{x} \in \mathcal{M}_1$ and $\mathbf{y} \in \mathcal{M}_2$ implies $\mathbf{x}^T \mathbf{y} = 0$
- ▶ (Orthogonal Basis) $\{\mathbf{x}_1, \dots, \mathbf{x}_r\}$ is an *orthogonal basis* for \mathcal{M} if $\{\mathbf{x}_1, \dots, \mathbf{x}_r\}$ is a basis of \mathcal{M} and for $i \neq j$, $\mathbf{x}_i^T \mathbf{x}_j = 0$.

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 0 \\ 3 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

† Def [Orthogonal]: — Contd

- $lackbox{}$ (Orthonormal Basis) $\{\mathbf{x}_1,\ldots,\mathbf{x}_r\}$ is an orthonormal basis for \mathcal{M} if $\{\mathbf{x}_1,\ldots,\mathbf{x}_r\}$ is an orthogonal basis and $\mathbf{x}_i^T\mathbf{x}_i^r=1$ for $i=1,\ldots,r$
- Note:
- $-\mathbf{Q}$ has orthogonal columns $\Rightarrow \mathbf{Q}^T \mathbf{Q} = \mathbf{D}$ (diagonal matrix)
- \mathbf{Q} has orthonormal columns $\Rightarrow \mathbf{Q}^T \mathbf{Q} = I$

† Def [Orthogonal Complement]: Let \mathcal{S} be a vector space, and let \mathcal{M} be a subspace of \mathcal{S} . Let $\mathcal{M}_{\mathcal{S}}^{\perp} = \{ \mathbf{y} \in \mathcal{S}^{\perp} | \mathbf{y} \perp \mathcal{M} \}$. $\mathcal{M}_{\mathcal{S}}^{\perp}$ is called the *orthogonal complement* of \mathcal{M} with respect to \mathcal{S} .

If S is taken as \mathbb{R}^n , then $\mathcal{M}_S^{\perp} \equiv \mathcal{M}^{\perp}$ is simply referred to as the orthogonal complements of \mathcal{M} .

In layman's terms, every vector in $\mathcal{M}\subset\mathcal{S}$ is orthogonal to every vector in $\mathcal{M}_{\mathcal{S}}^{\perp}$.

- \clubsuit Th: Let $\mathcal S$ be a vector space, and let $\mathcal M$ be a subspace of $\mathcal S$.
 - ► The orthogonal complement of \mathcal{M} with respect to \mathcal{S} is a subspace of \mathcal{S} ; $y = \hat{y} + \hat{e}$
 - If $x \in \mathcal{S}$, x can be written <u>uniquely</u> as $x = x_0 + x_1$ with $x_0 \in \mathcal{M}$ and $x_1 \in \mathcal{M}_{\mathcal{S}}^{\perp}$.
 - $\stackrel{\text{$\widehat{\mathcal{C}}$}}{\sim} \mathcal{N}(\overset{\mathsf{X}^{\mathsf{r}}}{\mathsf{X}^{\mathsf{r}}})$ The ranks of these spaces satisfy the relation, $r(\mathcal{S}) = r(\mathcal{M}) + r(\mathcal{M}_{\mathcal{S}}^{\perp})$.

$$S = IR^3$$
 $A = \begin{bmatrix} 1 & 1 & 2 & 7 \\ 1 & 0 & 3 \\ 1 & 0 & 3 \end{bmatrix}$ $M = C(A)$
 $M = \begin{bmatrix} 1 & 0 & 3 \\ 1 & 0 & 3 \end{bmatrix}$ where vectors with the form $\begin{bmatrix} a \\ b \\ B \end{bmatrix}$, a, b $\in IR^3$

what is
$$M^{\frac{1}{2}}$$
?

 $M^{\frac{1}{2}} = \begin{cases} \text{all the vectors} & \text{with the form } \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \text{ o. } \text{ o. } \text{cerr} \frac{37}{61} \end{cases}$
 $E^{1/2}$
 E

$$e(x)$$
 $N(x^{T})$ \hat{y}^{Ψ} \hat{e}^{Ψ}

voetore spaces w/ vectors

(n IR)

XE E(K)

Result: For any matrix \mathbf{A} $(m \times n)$, $C(\mathbf{A})$ and $\mathcal{N}(\mathbf{A}^T)$ are orthogonal complements in \mathbb{R}^m .

Let
$$r(A) = r(A^r) = r$$

 $= \int dim (e(A)) = \Gamma$ $dim (N(A^{T})) = m - \Gamma$

Suppose $V \in C(A)$ 8. $V \in N(A^T) \Rightarrow Coant to show <math>V = 0$ $V \in C(A) \Rightarrow \exists c (t = 0) s + V = Ac$ $O(C(A^T) \Rightarrow A^T V = 0 = A^T A c$

 $\Rightarrow \quad \text{Consider} \quad \forall V = (Ac)^T (Ac) = \underbrace{c^T A^T A C}_{=0} = 0$

•Bottom Line: $C(\mathbf{X})$ and $\mathcal{N}(\mathbf{X}^T)$ are orthogonal complements in \mathbb{R}^n . So, $\hat{\mathbf{y}} \perp \hat{\mathbf{e}}$ and $\mathbf{y} = \hat{\mathbf{y}} + \hat{\mathbf{e}}$ is the unique decomposition.

★ Summary! Recall the NEs:

$$\mathbf{X}^T \mathbf{X} \boldsymbol{\beta} = \mathbf{X}^T \mathbf{y}.$$

Suppose $\hat{\beta}$ is a solution for the NEs.

- $\mathbf{y} \in \mathbb{R}^n$.
- $\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}} \in C(\mathbf{X}).$
- $\mathbf{X}^T(\mathbf{y} \mathbf{X}\hat{\boldsymbol{\beta}}) = \mathbf{X}^T\hat{\mathbf{e}} = 0 \Rightarrow \hat{\mathbf{e}} \in \mathcal{N}(\mathbf{X}^T)$
- ŷ l ê
- $\mathbf{y} = \hat{\mathbf{y}} + \hat{\mathbf{e}}$ is the unique decomposition.

- $\mathbf{y} = \hat{\mathbf{y}} + \hat{\mathbf{e}}$ is the unique decomposition.
- \Rightarrow The unique orthogonal decomposition of sums of squares from the Pythagorean Theorem,

$$||\mathbf{y}||^2 = ||\hat{\mathbf{y}} + \hat{\mathbf{e}}||^2 = ||\hat{\mathbf{y}}||^2 + ||\hat{\mathbf{e}}||^2$$

- $SST = ||\mathbf{y}||^2$: the total sum of squares
- $SSR = ||\hat{\mathbf{y}}||^2 = ||\mathbf{X}^T \hat{\boldsymbol{\beta}}||^2$: the regression sum of squares
- $SSE = ||\hat{\mathbf{e}}||^2$: the error sum of squares

† Geometry of Least Squares: $(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})^{\mathsf{T}}(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}) = \min_{\boldsymbol{\beta}}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\mathsf{T}}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$

† Fact:

- ullet Decomposition of ${f y}=\hat{{f y}}+{f y}-\hat{{f y}}$ into $\hat{{f y}}={f X}\hat{m eta}$ (fitted value) and $\hat{{f e}}={f y}-\hat{{f y}}$ (residuals)
- ullet $\hat{f e}$ is orthogonal to $\hat{f y}$ (that is, $\hat{f e} \in \mathcal{N}({f X}^T)$)
- $\hat{\mathbf{y}}$ is the orthogonal projection of \mathbf{y} onto $C(\mathbf{X})$
- $\hat{\mathbf{e}}$ is the orthogonal projection onto the orthogonal complement of $C(\mathbf{X})$. $= \mathcal{N}(\mathbf{X}^{\tau})$

†: The geometry provides good intuition for n-dimensional problems (but hard to visualize for n > 3).

† Geometry of Least Squares:

$$(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{eta}})^T(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{eta}}) = \min_{\boldsymbol{eta}}(\mathbf{y} - \mathbf{X}\boldsymbol{eta})^T(\mathbf{y} - \mathbf{X}\boldsymbol{eta})$$

- \Rightarrow LSE $\hat{m{eta}}$ is the vector that makes $\hat{m{y}} = m{X}\hat{m{eta}} \in C(m{X})$ closest to $m{y}$.
- \Rightarrow The vector in $C(\mathbf{X})$ that is closest to \mathbf{y} is the perpendicular projection of \mathbf{y} onto $C(\mathbf{X})$.
- ⇒ Then how to find orthogonal projection matrices?
- \bigstar Two ways to find the perpendicular projection matrix onto $C(\mathbf{X})$.
 - \triangle A generalized inverse
 - △ The Gram-Schmidt theorem

- * Road map:
- Discuss the perpendicular projection matrix
- Discuss how to find perpendicular projection matrix

Consider
$$X = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \in \mathbb{R}^2$$
, $Y(X) = 1$
 $P(X) = \begin{bmatrix} 2q \\ q \end{bmatrix}$, $q \in \mathbb{R}$
 $P(X) = \begin{bmatrix} 2q \\ q \end{bmatrix}$, $q \in \mathbb{R}$
 $P(X) = \begin{bmatrix} 2q \\ q \end{bmatrix}$, $q \in \mathbb{R}$
 $P(X) = \begin{bmatrix} 2q \\ q \end{bmatrix}$, $q \in \mathbb{R}$
 $P(X) = \begin{bmatrix} 2q \\ q \end{bmatrix}$, $q \in \mathbb{R}$
 $P(X) = \begin{bmatrix} 2q \\ q \end{bmatrix}$, $q \in \mathbb{R}$
 $P(X) = \begin{bmatrix} 2q \\ q \end{bmatrix}$, $q \in \mathbb{R}$
 $P(X) = \begin{bmatrix} 2q \\ q \end{bmatrix}$, $q \in \mathbb{R}$
 $P(X) = \begin{bmatrix} 2q \\ q \end{bmatrix}$, $q \in \mathbb{R}$
 $P(X) = \begin{bmatrix} 2q \\ q \end{bmatrix}$, $q \in \mathbb{R}$
 $P(X) = \begin{bmatrix} 2q \\ q \end{bmatrix}$, $q \in \mathbb{R}$

& claim: M is a perpendicular projection matrix onto C(X)
Wt's check (i) & cii)

(i)
$$V = \begin{bmatrix} 20 \\ 0 \end{bmatrix} \in e(x)$$
. $MV = \begin{bmatrix} 0.8 & 0.4 \\ 0.4 & 0.2 \end{bmatrix} \begin{bmatrix} 20 \\ 0 \end{bmatrix}$

$$= \begin{bmatrix} 1.60 + 0.40 \\ 0.80 + 0.20 \end{bmatrix} = \begin{bmatrix} 20 \\ 0 \end{bmatrix} = V$$

(ii)
$$W = \begin{bmatrix} -2b \end{bmatrix} \perp C(X)$$
, $WW = \begin{bmatrix} 0.4 & 0.5 \end{bmatrix} \begin{bmatrix} -2b \end{bmatrix}$

$$= \begin{bmatrix} 0.8b - 0.8b \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

& check prop! e(x) = e(M)

$$\forall$$
 (i) $MM = \begin{bmatrix} 0.8 & 0.4 \\ 0.4 & 0.2 \end{bmatrix} \begin{bmatrix} 0.8 & 0.4 \\ 0.4 & 0.2 \end{bmatrix} \begin{bmatrix} 0.8 & 0.4 \\ 0.32 + 0.08 \end{bmatrix} = \begin{bmatrix} 0.64 & 0.32 + 0.08 \\ 0.32 + 0.08 & 0.16 + 0.04 \end{bmatrix}$

$$= \begin{bmatrix} 0.8 & 0.4 \\ 0.4 & 0.2 \end{bmatrix} = M V$$

(ii) M is symmetric!

- † Def [Projection]: A square matrix M is a perpendicular projection operator (matrix) onto C(X) if and only if
 - (i) $\mathbf{v} \in C(\mathbf{X})$ implies $\mathbf{M}\mathbf{v} = \mathbf{v}$ (projection)
- (ii) $\mathbf{w} \perp C(\mathbf{X})$ implies $\mathbf{M}\mathbf{w} = 0$ (perpendicularity)
- ★ Note: Any projection that is not a perpendicular projection is called an *oblique projection operator*.
- \bigstar Prop If **M** is a perpendicular projection operator onto $C(\mathbf{X})$, then $C(\mathbf{M}) = C(\mathbf{X})$.
- Th: \mathbf{M} is a perpendicular projection operator on $C(\mathbf{M})$ if and only if (i) $\mathbf{M}\mathbf{M} = \mathbf{M}$ (idempotent) and (ii) $\mathbf{M}^T = \mathbf{M}$ (symmetric).
- Th: Perpendicular projection operators are unique.

$$Y = \hat{Y} + \hat{e}$$

$$Ty = P_{2}y + P_{2}y$$

$$T = P_{1} + P_{2}$$

$$P_{2} - J - P_{3}$$

- Th: Let M_1 and M_2 are perpendicular projection matrices on \mathbb{R}^n . $(M_1 + M_2)$ is the perpendicular projection matrix onto $C(M_1, M_2)$ if and only if $C(M_1) \perp C(M_2)$.
- ♣ Th: If M_1 and M_2 are symmetric, $C(M_1) \perp C(M_2)$, and $(M_1 + M_2)$ is the perpendicular projection matrix, then M_1 and M_2 are perpendicular projection matrices.

- ♣ Th: M and M_0 are perpendicular projection matrices with $C(M_0) \subset C(M)$. Then $M M_0$ is a perpendicular projection matrix.
- ♣ Th:M and M₀ are perpendicular projection matrices with $C(M_0) \subset C(M)$. Then $C(M M_0)$ is the orthogonal complement of $C(M_0)$ with respect to C(M). If $x \in C(M)$ and $x \perp C(M_0)$, then $x = Mx = (M M_0)x + M_0x = (M M_0)x$. Thus, $x \in C(M M_0)$, so the orthogonal complement of $C(M_0)$ with respect to C(M) is contained in $C(M M_0)$.

$$\bigstar$$
 Cor: $r(\mathbf{M}) = r(\mathbf{M}_0) + r(\mathbf{M} - \mathbf{M}_0)$

★ Summary!

- Say **P** is the perpendicular projection matrix onto $C(\mathbf{X})$.
- I is the perpendicular projection operator onto \mathbb{R}^n .
- \bullet (I P): the perpendicular projection matrix onto the orthogonal

complement of
$$C(\mathbf{X})$$
 with respect to \mathbb{R}^n .

 $r(I) = r(\mathbf{P}) + r(I - \mathbf{P}) = r + (n - r)$ where $r(C(\mathbf{X})) = r$.

Decompose y into

$$\mathbf{y} = \mathbf{P}\mathbf{y} + (I - \mathbf{P})\mathbf{y} = \hat{\mathbf{y}} + \hat{\mathbf{e}}$$