## Spring 16 - AMS256 Homework 1

1. Observe that $z_{i}=y_{i} / x_{i}=\beta_{1}+\beta_{0} / x_{i}+\epsilon_{i} / x_{i} \Rightarrow$ This model is still linear in $\boldsymbol{\beta}$.
2. (a) Note that three columns are linearly independent. Or the three rows are linearly independent. So $r(\boldsymbol{X})=3$
(b) $\operatorname{dim}(C(\boldsymbol{X}))=r(\boldsymbol{X})=3$.

A basis that we can easily come up with (you may find a different set of vectors for the
basis) is a set of the following three vectors, $\boldsymbol{u}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right]$ or $\boldsymbol{u}_{2}=\left[\begin{array}{c}-1 \\ 0 \\ 0 \\ 1 \\ 0\end{array}\right]$ or $\boldsymbol{u}_{3}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1 \\ 0\end{array}\right]$.
(c) $\operatorname{dim}(\boldsymbol{\mathcal { N }}(\boldsymbol{X}))=4-\operatorname{dim}(C(\boldsymbol{X}))=4-3=1$. We need to find a vector $\boldsymbol{v}$ such that $\boldsymbol{X} \boldsymbol{v}=\mathbf{0}$. A basis is $\boldsymbol{v}_{1}=\left[\begin{array}{c}0 \\ 1 \\ 0 \\ -1\end{array}\right]$. We can check that $\boldsymbol{v}_{1} \perp \boldsymbol{u}_{j}, j=1,2,3$.
(d) $\boldsymbol{X}^{T} \boldsymbol{X}=\left[\begin{array}{llll}5 & 1 & 3 & 1 \\ 1 & 3 & 1 & 3 \\ 3 & 1 & 3 & 1 \\ 1 & 3 & 1 & 3\end{array}\right]$. Recognize that the submatrix of the upper $3 \times 3$ is nonsingular matrix and find a g-inverse matrix, $\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-}=\left[\begin{array}{cccc}1 / 2 & 0 & -1 / 2 & 0 \\ 0 & 3 / 8 & -1 / 8 & 0 \\ -1 / 2 & -1 / 8 & 7 / 8 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
(e)

$$
\boldsymbol{P}=\boldsymbol{X}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-} \boldsymbol{X}^{T}=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 / 2 & 1 / 2 & 0 & 0 \\
0 & 1 / 2 & 1 / 2 & 0 & 0 \\
0 & 0 & 0 & 1 / 2 & 1 / 2 \\
0 & 0 & 0 & 1 / 2 & 1 / 2
\end{array}\right]
$$

If $\boldsymbol{y} \in C(\boldsymbol{P})=C(\boldsymbol{X}), \boldsymbol{P} \boldsymbol{y}=\boldsymbol{y}$. So $[3,1,1,2,2]^{T}$ and $[1,0,0,2,2]^{T}$ can be $\boldsymbol{P} \boldsymbol{y}$.
(f) Recall that $\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-} \boldsymbol{X}$ is a g -inverse of $\boldsymbol{X}$. We use this to construct all the solutions, $\tilde{\boldsymbol{x}}=\boldsymbol{G} \boldsymbol{c}+(I-\boldsymbol{G A}) \boldsymbol{z}$ for $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{c}$ from lecture. Thus, for some $\boldsymbol{z} \in \mathbb{R}^{p}$

$$
\tilde{\boldsymbol{x}}=\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right) \boldsymbol{y}+\left(I-\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)\right) \boldsymbol{z}
$$

By varying $\boldsymbol{z}$, we can obtain all possible solutions of $\boldsymbol{\beta}$.
3.

$$
\begin{aligned}
y_{i} & =\beta_{0}+\beta_{1} x_{i}+\epsilon_{i} \\
& =\beta_{0}+\beta_{1}(s+t i)+\epsilon_{i} \\
& =\beta_{0}+\beta_{1} s+\beta_{1} t i+\epsilon_{i} \\
& =\gamma_{0}+\gamma_{1} i+\epsilon_{i}
\end{aligned}
$$

where $\gamma_{0}=\beta_{0}+\beta_{1} s$ and $\gamma_{1}=\beta_{1}$ t. Thus, they are an equivalent parameterization.
4. - LSE

Let $\hat{\theta}=\operatorname{argmin}_{\theta} Q(\theta)=\operatorname{argmin}_{\theta}\|\boldsymbol{Y}-\boldsymbol{X} \beta\|$ where $\boldsymbol{X}=\left[x_{1}^{2}, \ldots, x_{n}^{2}\right]^{T}$ and $\beta=\theta$. From lecture, for full rank $\boldsymbol{X}$ we know

$$
\hat{\beta}=\hat{\theta}=\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{y}=\frac{\sum_{i} x_{i}^{2} y_{i}}{x_{i}^{4}} .
$$

- MLE

$$
\frac{\partial \log f(\mathbf{y} \mid \theta)}{\partial \theta}=\frac{\partial\left\{-\frac{n}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{\left.\sum_{i}\left(y_{i}-\theta x_{i}\right)^{2}\right)}{2 \sigma^{2}}\right\}}{\partial \theta}=0 \Rightarrow \hat{\theta}=\frac{\sum_{i=1}^{n} x_{i}^{2} y_{i}}{\sum_{i=1}^{4} x_{i}^{4}}
$$

5. Plugging in $\boldsymbol{x}^{\star}$ and $\boldsymbol{y}^{\star}$ for $\boldsymbol{x}$ and $\boldsymbol{y}$, respectively, we obtain

$$
\begin{aligned}
\hat{\beta}_{1}^{\star} & =\frac{S_{x y}^{\star}}{S_{x x}^{\star}}=\frac{\sum\left(x_{i}^{\star}-\bar{x}^{\star}\right)\left(y_{i}^{\star}-\bar{y}^{\star}\right)}{\sum\left(x_{i}^{\star}-\bar{x}^{\star}\right)^{2}}=\frac{\sum\left(\left(c+d x_{i}\right)-(c+d \bar{x})\right)\left(\left(a+b y_{i}\right)-(a+b \bar{y})\right)}{\sum\left(\left(c+d x_{i}\right)-(c+d \bar{x})\right)^{2}} \\
& =\frac{b \sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{d \sum\left(x_{i}-\bar{x}\right)^{2}}=\frac{b \hat{\beta}_{1}}{d}, \\
\hat{\beta}_{0}^{\star} & =\bar{y}^{\star}-\hat{\beta}_{1}^{\star} \bar{x}^{\star}=(a+b \bar{y})-\frac{b \hat{\beta}_{1}}{d}(c+d \bar{x})=a-\frac{b c \hat{\beta}_{1}}{d}+b \hat{\beta_{0}} .
\end{aligned}
$$

6. From lecture, $\hat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{y}$.

$$
\begin{gathered}
\boldsymbol{X}^{T} \boldsymbol{X}=\left[\begin{array}{cc}
8 & 272 \\
272 & 9318
\end{array}\right] \quad \Rightarrow \quad\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1}=\left[\begin{array}{ccccc}
16.639 & -0.486 \\
-0.486 & 0.014
\end{array}\right] \\
\boldsymbol{X}^{T} \boldsymbol{Y}=\left[\begin{array}{ccccccc}
71 & 63 & 68 & 70 & 71 & 63 & 68 \\
2457 & 2010 & 2176 & 2176 & 2205 & 2412 & 2448 \\
1920
\end{array}\right]^{T} \\
\Rightarrow \hat{\boldsymbol{\beta}}=\left[\begin{array}{c}
35.174 \\
0.929
\end{array}\right]
\end{gathered}
$$

ANOVA Table:

| Source of Variation | Sum of Squares | DF | Mean squares | F-stat |
| ---: | ---: | ---: | ---: | ---: |
| Model | 60.415 | 1 | 60.415 | 50.73 |
| Error(residual) | 7.145 | 6 | 1.19 |  |
| Total | 67.5 | 7 | 9.64 |  |

$$
\begin{aligned}
\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2} & =\sum_{i=1}^{n}\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} \bar{x}\right)^{2}=\hat{\beta}_{1}^{2} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \\
& =\left(\frac{S_{x y}}{S_{x x}}\right)^{2} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\frac{S_{x y}^{2}}{S_{x x}}=\boldsymbol{y}^{T}\left(\boldsymbol{P}_{x}-\boldsymbol{P}_{1}\right) \boldsymbol{y}
\end{aligned}
$$

where $\boldsymbol{P}_{x}$ and $\boldsymbol{P}_{1}$ are the orthogonal projection operators onto $C(\boldsymbol{X})$ and $C(\mathbf{1})$, respectively. That is, $\boldsymbol{P}_{x}$ : projection matrix for the model for an intercept and a slope and $\boldsymbol{P}_{1}$ : projection matrix under the model with an intercept. From lecture,

$$
R^{2}=1-\frac{\left\|\boldsymbol{y}^{T}\left(\boldsymbol{P}_{x}-\boldsymbol{P}_{1}\right) \boldsymbol{y}\right\|^{2}}{\left\|\boldsymbol{y}^{T}\left(I-\boldsymbol{P}_{1}\right) \boldsymbol{y}\right\|^{2}}=1-\frac{\sum_{i}\left(\hat{y}_{i}-\bar{y}\right)^{2}}{\sum_{i}\left(y_{i}-\bar{y}\right)^{2}}=1-\frac{S S E}{S S T}=1-\frac{7.145}{67.5}=0.894
$$

7. (a)
model1 $=\operatorname{lm}\left(\mathrm{MPG}^{\sim} \mathrm{HP}\right.$, dat)
plot (dat\$HP, dat\$MPG)
abline (model1)
summary (model1)

|  | Estimate | Std. Error | t value | $\operatorname{Pr}(>\|\mathrm{t}\|)$ |
| ---: | ---: | ---: | ---: | ---: |
| (Intercept) | 50.0661 | 1.5695 | 31.90 | 0.0000 |
| HP | -0.1390 | 0.0121 | -11.52 | 0.0000 |

Residual standard error: 6.174 on 80 degrees of freedom
Multiple R-squared: 0.6239,
Adjusted R-squared: 0.6192
F-statistic: 132.7 on 1 and 80 DF , p-value: < 2.2e-16

(b) model2 $=\operatorname{lm}(\log (\mathrm{MPG}) \sim \mathrm{HP}$, dat $)$ plot (dat\$HP, $\log ($ dat $\$ \mathrm{MPG})$ )
abline (model2)
summary (model2)

|  | Estimate | Std. Error | t value | $\operatorname{Pr}(>\|\mathrm{t}\|)$ |
| ---: | ---: | ---: | ---: | ---: |
| (Intercept) | 4.0132 | 0.0401 | 100.02 | 0.0000 |
| HP | -0.0046 | 0.0003 | -14.87 | 0.0000 |

Residual standard error: 0.1578 on 80 degrees of freedom
Multiple R-squared: 0.7344,
Adjusted R-squared: 0.7311
F-statistic: 221.2 on 1 and $80 \mathrm{DF}, \mathrm{p}$-value: $<2.2 \mathrm{e}-16$


The scatterplots shows that the linear model fits better for $\log (M P G)$. Also, from the R output, Model2 has a higher Adjusted R-squared compared to Model1, which indicates that Model2 has better explains the variability in the data better than Model1. Model2 also have a lower residual standard error compared to Model1.
(c) model3 $=\operatorname{lm}\left(\mathrm{MPG}^{\sim} \mathrm{HP}+\mathrm{VOL}+\mathrm{SP}+\mathrm{WT}\right.$, dat)
summary (model3)

|  | Estimate | Std. Error | t value | $\operatorname{Pr}(>\|\mathrm{t}\|)$ |
| ---: | ---: | ---: | ---: | ---: |
| (Intercept) | 192.4378 | 23.5316 | 8.18 | 0.0000 |
| HP | 0.3922 | 0.0814 | 4.82 | 0.0000 |
| VOL | -0.0156 | 0.0228 | -0.69 | 0.4951 |
| SP | -1.2948 | 0.2448 | -5.29 | 0.0000 |
| WT | -1.8598 | 0.2134 | -8.72 | 0.0000 |

Residual standard error: 3.653 on 77 degrees of freedom
Multiple R-squared: 0.8733,
Adjusted R-squared: 0.8667
F-statistic: 132.7 on 4 and 77 DF , p-value: $<2.2 \mathrm{e}-16$
8.

$$
\begin{aligned}
\mathrm{E}\left(y_{0}\right) & =\mathrm{E}\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{0}+\epsilon_{0}\right) \\
& =\beta_{0}+\beta_{1} x_{0}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var}\left(y_{0}\right) & =\operatorname{Var}\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{0}+\epsilon_{0}\right) \\
& =\operatorname{Var}\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{0}\right)+\operatorname{Var}\left(\epsilon_{0}\right) \\
& =\operatorname{Var}\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{0}\right)+\sigma^{2} \\
& =\left[\begin{array}{ll}
1 & x_{0}
\end{array}\right]\left[\begin{array}{cc}
\frac{\sigma^{2}}{n S_{x x}} \sum^{2} x_{i}^{2} & -\frac{\sigma^{2} \bar{x}}{n S_{x x x}} \\
-\frac{\sigma^{2} \bar{x}}{n S_{x x}} & \frac{\sigma^{2}}{n S_{x x}}
\end{array}\right]\left[\begin{array}{c}
1 \\
x_{0}
\end{array}\right]+\sigma^{2} \\
& =\frac{\sigma^{2}}{n S_{x x}}\left(\frac{\sum x_{i}^{2}}{n}-2 \bar{x} x_{0}+x_{0}^{2}\right)+\sigma^{2}
\end{aligned}
$$

