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Outline
• Map pattern

• Optimizations
• Example: Scaled Vector Addition (SAXPY)

• Collectives
• Reduce Pattern
• Scan Pattern
• Gather Pattern
• Scatter Pattern
• Pack Pattern
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Mapping
• “Do the same thing many times”

foreach i in foo:
do something

• Well-known higher order function in Functional Languages like Haskell, ML, Scala:
map :: (a -> b) -> [a] -> [b]

applies a function to each element in a list and returns a list of results
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Example Maps
Add 1 to every item in an array Double every item in an array

0 4 5 3 1 0
0 1 2 3 4 5

1 5 6 4 2 1

3 7 0 1 4 0

6 14 0 2 8 0

0 1 2 3 4 5

Key Point: An operation is a map if it can be applied to each element without knowledge of neighbors.
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Key Idea
• Map is a “foreach loop” where each iteration is independent
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Embarrassingly Parallel
Independence is a big win. We can run map completely in parallel.  
Significant speedups!  More precisely: T(n) is O(1) plus implementation 
overhead that is O(log n); so T(n) = O(log n).
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Sequential Map

for (int n=0; n< array.length; ++n)
{

process(array[n]);
}
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Parallel Map

parallel_for_each (x in array)
{

process(x);
}
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Comparing Maps
Serial Map

8

Parallel Map

Speedup
The space here is speedup. With the 
parallel map, our program finished 
execution early, while the serial map is 
still running. 
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Independence
• The key to (embarrassing) parallelism is independence

• Modifying shared state breaks perfect independence
• Results of accidentally violating independence:

• non-determinism
• data-races
• undefined behavior
• segfaults

9

Map function should be “pure” (or “pure-ish”) and should not 
modify shared states

Warning: No shared state!
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Implementation and API
• OpenMP and Cilk Plus contain a parallel for language construct
• Map is a mode of use of parallel for
• TBB uses higher order functions with lambda expressions/“functors”
• Some languages (Cilk Plus, Matlab, Fortran) provide array notation which makes some maps more concise
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A[:] = A[:]*5;
is Cilk Plus array notation for “multiply every element in A by 5”

Array Notation
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Unary Maps
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So far we have only dealt with mapping over a single collection…
Unary Maps
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Map with 1 Input and 1 Output
x 3 7 0 1 4 0 0 4 5 3 1 0

0 1 2 3 4 5 6 7 8 9 10 11

6 14 0 2 8 0 0 8 10 6 2 0result

int oneToOne ( int x[11] ) {
return x*2; 

}
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N-ary Maps
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But sometimes it makes sense to map over multiple collections at once…
N-ary Maps
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Map with 2 Inputs and 1 Output
x 3 7 0 1 4 0 0 4 5 3 1 0

0 1 2 3 4 5 6 7 8 9 10 11

5 11 2 2 12 3 9 9 10 4 3 1result

y 2 4 2 1 8 3 9 5 5 1 2 1

int twoToOne ( int x[11], int y[11] ) {
return x+y; 

}
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Optimization – Sequences of Maps
• Often several map operations occur in sequence

• Vector math consists of many small operations such as additions and multiplications applied as maps
• A naïve implementation may write each intermediate result to memory, wasting memory bandwidth and likely overwhelming the cache
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Optimization – Code Fusion
• Can sometimes “fuse” together the operations to perform them at once
• Adds arithmetic intensity, reduces memory/cache usage
• Ideally, operations can be performed using registers alone
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Optimization – Cache Fusion
• Sometimes impractical to fuse together the map operations
• Can instead break the work into blocks, giving each CPU one block at a time
• Hopefully, operations use cache alone
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Example: Scaled Vector Addition (SAXPY)
• y ← ax + y

• Scales vector x by a and adds it to vector y
• Result is stored in input vector y

• A level-1 routine in the BLAS (Basic Linear Algebra Subprograms)library
• Every element in vector x and vector y are independent
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What does y ← ax + y look like?

19

a 4 4 4 4 4 4 4 4 4 4 4 4
0 1 2 3 4 5 6 7 8 9 10 11

11 23 8 5 36 12 36 49 50 7 9 4y

y 3 7 0 1 4 0 0 4 5 3 1 0
x 2 4 2 1 8 3 9 5 5 1 2 1*
+
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y ← ax + y Visual:  
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a 4 4 4 4 4 4 4 4 4 4 4 4
0 1 2 3 4 5 6 7 8 9 10 11

11 23 8 5 36 12 36 49 50 7 9 4y

y 3 7 0 1 4 0 0 4 5 3 1 0
x 2 4 2 1 8 3 9 5 5 1 2 1*
+

Twelve processors used  one for each element in 
the vector
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y ← ax + y Visual:  
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a 4 4 4 4 4 4 4 4 4 4 4 4
0 1 2 3 4 5 6 7 8 9 10 11

11 23 8 5 36 12 36 49 50 7 9 4y

y 3 7 0 1 4 0 0 4 5 3 1 0
x 2 4 2 1 8 3 9 5 5 1 2 1*
+

Six processors used  one for every two elements in 
the vector
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y ← ax + y Visual:  
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a 4 4 4 4 4 4 4 4 4 4 4 4
0 1 2 3 4 5 6 7 8 9 10 11

11 23 8 5 36 12 36 49 50 7 9 4y

y 3 7 0 1 4 0 0 4 5 3 1 0
x 2 4 2 1 8 3 9 5 5 1 2 1*
+

Two processors used  one for every six elements 
in the vector
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Serial SAXPY Implementation
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OpenMP SAXPY Implentation
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TBB SAXPY Implementation
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Cilk Plus SAXPY Implementation
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Collectives
• Collective operations deal with a collection of data as a whole, rather than as separate elements
• Collective patterns include: 

• Reduce
• Scan
• Gather
• Scatter
• Pack
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Reduce
• Reduce is used to combine a collection of elements into one summary value
• A combiner function combines elements pairwise
• A combiner function only needs to be associative to be parallelizable
• Example combiner functions:

• Addition
• Multiplication
• Maximum / Minimum
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Serial vs. Parallel Reduce

29

Serial Reduction Parallel Reduction
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Tiled Reduce
• Tiling is used to break chunks of work up for workers to reduce serially
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Serial Reduce – Add Example

31

1 2 45 9 7 0 1

28

12

3
8

21

29
28

29
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Parallel Reduce – Add Example
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1 2 45 9 7 0 1

3 9 116

12 17

29

29
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Fused Map and Reduce
• We can “fuse” the map and reduce patterns
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Precision
• Precision can become a problem with reductions on floating point data
• Different orderings of floating point data can change the reduction value
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(1.0 + 1.0e10) + -1.0e10
= 1.0e10 + -1.0e10
= 0.0but

1.0 + (1.0e10 + -1.0e10)
= 1.0 + 0.0
= 1.0



Reduce Example: Dot Product
• 2 vectors of same length
• Map (*) to multiply the components
• Then reduce with (+) to get the final answer
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Scan
• The scan pattern produces partial reductions of input sequence, generates new sequence
• Trickier to parallelize than reduce
• Inclusive scan vs. exclusive scan

• Inclusive scan: includes current element in partial reduction
• Exclusive scan: excludes current element in partial reduction, partial reduction is of all prior elements prior to current element
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Scan – Example Uses
• Lexical comparison of strings – e.g., determine that “strategy” should appear before “stratification” in a dictionary
• Add multi-precision numbers (those that cannot be represented in a single machine word)
• Evaluate polynomials
• Implement radix sort or quicksort
• Delete marked elements in an array
• Dynamically allocate processors
• Lexical analysis – parsing programs into tokens
• Searching for regular expressions
• Labeling components in 2-D images
• Some tree algorithms – e.g., finding the depth of every vertex in a tree
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Serial vs. Parallel Scan
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Serial Scan

Parallel Scan
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Scan
• One algorithm for parallelizing scan is to perform an “up sweep” and a “down sweep”
• Reduce the input on the up sweep
• The down sweep produces the intermediate results

39

Up sweep – compute reduction

Down sweep – compute intermediate values

Introduction to Parallel Computing, University of Oregon, IPCC



Scan – Maximum Example
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1 2 7 2 4 34 0

1 2 7 2 4 34 0

1 1

4

4

4
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Tiled Scan

41Introduction to Parallel Computing, University of Oregon, IPCC

Three phase scan with tiling 



Fused Map and Scan
• We can also fuse the map pattern with the scan pattern
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Data Movement 
• Performance is often more limited by data movement than by computation

• Transferring data across memory layers is costly
• locality is important to minimize data access times
• data organization and layout can impact this• Transferring data across networks can take many cycles
• attempting to minimize the # messages and overhead is important• Data movement also costs more in power

• For “data intensive” application, it is a good idea to design the data movement first
• Design the computation around the data movements
• Applications such as search and sorting are all about data movement and reorganization
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Parallel Data Reorganization
• Remember we are looking to do things in parallel
• How to be faster than the sequential algorithm?
• Similar consistency issues arise as when dealing with computation parallelism
• Here we are concerned more with parallel data movement and management issues
• Might involve the creation of additional data structures (e.g., for holding intermediate data)
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Gather Pattern
• Gather pattern creates an (output) collection of data by reading from another (source) data collection

• Given a collection of (ordered) indices
• Read data from the source collection at each index
• Write data to the output collection in index order

• Transfers from source collection to output collection
• Element type of output collection is the same as the source
• Shape of the output collection is that of the index collection

• same dimensionality
• Can be considered a combination of map and random serial read operations

• Essentially does a number of random reads in parallel
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Gather: Defined

Given a collection of read locations
• address or array indices
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Gather: Defined

Given a collection of read locations
• address or array indices 
and a source array
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Gather: Defined

Given a collection of read locations
• address or array indices
and a source array
gather all the data from the source array at the given locations and places them into an output collection
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Gather: Defined

Given a collection of read locations
• address or array indices
and a source array
gather all the data from the source array at the given locations and places them into an output collection
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What value should go into index 
1 of output collection??
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Gather: Defined

Given a collection of read locations
• address or array indices
and a source array
gather all the data from the source array at the given locations and places them into an output collection
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Read the value at index 1 of 
source array?
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Gather: Defined

Given a collection of read locations
• address or array indices
and a source array
gather all the data from the source array at the given locations and places them into an output collection
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Read the value at index 5 of 
locations array?
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Gather: Defined

Given a collection of read locations
• address or array indices
and a source array
gather all the data from the source array at the given locations and places them into an output collection
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Map value stored at index 5 of locations 
array into output collection
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Gather: Defined

Given a collection of read locations
• address or array indices
and a source array
gather all the data from the source array at the given locations and places them into an output collection
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Sequential order

Where is the parallelism? 
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Quiz 1
Given the following source and locations array, use a gather to determine what values should go into the output collection:

54

3 7 0 1 4 0 0 4 5 3 1 0
0 1 2 3 4 5 6 7 8 9 10 11

1 9 6 9 3

? ? ? ? ?

Introduction to Parallel Computing, University of Oregon, IPCC
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Quiz 1 Answer
Given the following source and locations array, use a gather to determine what values should go into the output collection:
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3 7 0 1 4 0 0 4 5 3 1 0
0 1 2 3 4 5 6 7 8 9 10 11

1 9 6 9 3

7 3 0 3 1
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Gather: Array Size

• Output data collection has the same number of elements as the number of indices in the index collection
• Same dimensionality
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Gather: Array Type

• Output data collection has the same number of elements as the number of indices in the index collection
• Elements of the output collection are the same type as the input data collection
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Gather: Serial Implementation
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Serial implementation of gather in pseudocode



Gather: Serial Implementation
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Serial implementation of gather in pseudocodeDo you see opportunities for parallelism?



Gather: Serial Implementation
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Serial implementation of gather in pseudocodeAre there any conflicts that arise?

Parallelize over 
for loop to 
perform random 
read



Gather: Defined (parallel perspective)
• Results from the combination of a map with a random read

• Simple pattern, but with many special cases that make the implementation more efficient

61Introduction to Parallel Computing, University of Oregon, IPCC



Special Case of Gather: Shifts

• Moves data to the left or right in memory
• Data accesses are offset by fixed distances

62

duplicate

rotate
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More about Shifts
• Regular data movement
• Variants from how boundary conditions handled

• Requires “out of bounds” data at edge of the array
• Options: default value, duplicate, rotate

• Shifts can be handled efficiently with vector instructions because of regularity
• Shift multiple data elements at the same time

• Shifts can also take advantage of good data locality
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Special Case of Gather: Zip

• Function is to interleaves data (like a zipper)

64

Where is the parallelism? 
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Zip Example

• Given two separate arrays of real parts and imaginary parts
• Use zip to combine them into a sequence of real and imaginary pairs

65

Array of Real Parts

Array of Imaginary Parts

Combined Sequence of 
Real and Imaginary Parts
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Special Case of Gather: Unzip

• Reverses a zip
• Extracts sub-arrays at certain offsets and strides from an input array

66

Where is the parallelism? 
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Unzip Example

• Given a sequence of complex numbers organized as pairs
• Use unzip to extract real and imaginary parts into separate arrays

67

Array of Real Parts

Array of Imaginary Parts

Combined Sequence of 
Real and Imaginary Parts
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Gather vs. Scatter
Gather
Combination of map with random reads
Read locations provided as input

Scatter
Combination of map with random writes
Write locations provided as input
Race conditions … Why?
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Scatter: Defined

Given a collection of input data
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Scatter: Defined

Given a collection of input dataand a collection of write locations
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Scatter: Defined

Given a collection of input dataand a collection of write locationsscatter data to the output collection
Problems?
Does the output collection have to be larger in size? 

71

Where is the parallelism? 

Introduction to Parallel Computing, University of Oregon, IPCC



Quiz 2
Given the following input and locations array, what values should go into the output collection:

72

3 7 0 1 4 0 0 4 5 3 1 0
0 1 2 3 4 5 6 7 8 9 10 11

2 4 1 5 5 0 4 2 1 2 1 4

? ? ? ? ?

Introduction to Parallel Computing, University of Oregon, IPCC
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Quiz 2 Answer
Given the following input and locations array, what values should go into the output collection:

73

3 7 0 1 4 0 0 4 5 3 1 0
0 1 2 3 4 5 6 7 8 9 10 11

2 4 1 5 5 0 4 2 1 2 1 4

0 1 3 0 4

Introduction to Parallel Computing, University of Oregon, IPCC
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Scatter: Serial Implementation

Serial implementation of scatter in pseudocode
74

Parallelize over 
for loop to 
perform random 
write
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Scatter: Defined
• Results from the combination of a map with a random write
• Writes to the same location are possible
• Parallel writes to the same location are collisions
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Scatter: Race Conditions

Given a collection of input dataand a collection of write locationsscatter data to the output collection

76

Race Condition: Two (or more) values being written to 
the same location in output collection. Result is undefined 
unless enforce rules. Need rules to resolve collisions!
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Collision Resolution: Atomic Scatter

• Non-deterministic approach
• Upon collision, one and only one of the values written to a location will be written in its entirety

77

Values “D” and “E” will collide at 
output collection index 2
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Collision Resolution: Atomic Scatter

• Non-deterministic approach
• Upon collision, one and only one of the values written to a location will be written in its entirety
• No rule determines which of the input items will be retained
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Values “D” and “E” will collide at 
output collection index 2
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Collision Resolution: Atomic Scatter

• Non-deterministic approach
• Upon collision, one and only one of the values written to a location will be written in its entirety
• No rule determines which of the input items will be retained

79

Values “D” and “E” will collide at 
output collection index 2
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Collision Resolution: Permutation Scatter

• Pattern simply states that collisions are illegal
• Output is a permutation of the input 

• Check for collisions in advance turn scatter into gather
• Examples

• FFT scrambling, matrix/image transpose, unpacking
80Introduction to Parallel Computing, University of Oregon, IPCC



Collision Resolution: Merge Scatter

• Associative and commutative operators are provided to merge elements in case of a collision
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Collision Resolution: Merge Scatter

• Associative and commutative operators are provided to merge elements in case of a collision
• Use addition as the merge operator
• Both associative and commutative properties are required since scatters to a particular location could occur in any order
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Collision Resolution: Priority Scatter

• Every element in the input array is assigned a priority based on its position
• Priority is used to decide which element is written in case of a collision
• Example

• 3D graphics rendering
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Converting Scatter to Gather
• Scatter is a more expensive than gather

• Writing has cache line consequences
• May cause additional reading due to cache conflicts
• False sharing is a problem that arises

• writes from different cores go to the same cache line
• Can avoid problems if addresses are know “in advance”

• Allows optimizations to be applied
• Convert addresses for a scatter into those for a gather
• Useful if the same pattern of scatter address will be used repeatedly so the cost is amortized
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Pack
• Used to eliminate unused elements from a collection
• Retained elements are moved so they are contiguous in memory
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Unpack
• Inverse of pack operation
• Given the same data on which elements were kept and which were discarded, spread elements back in their original locations
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Generalization of Pack: Split
• Generalization of pack pattern
• Elements are moved to upper or lower half of output collection based on some state
• Does not lose information like pack

87

Upper half of output 
collection: values equal to 0
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Generalization of Pack: Split
• Generalization of pack pattern
• Elements are moved to upper or lower half of output collection based on some state
• Does not lose information like pack
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collection: values equal to 1



Generalization of Pack: Unsplit
• Inverse of split
• Creates output collection based on original input collection
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Generalization of Pack: Bin
• Generalized split to support more categories (>2)
• Examples

• Radix sort
• Pattern classification
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4 different categories = 4 bins

Introduction to Parallel Computing, University of Oregon, IPCC



Fusion of Map and Pack
• Advantageous if most of the elements of a map are discarded
• Map checks pairs for collision
• Pack stores only actual collisions
• Output bandwidth ~ results reported, not number of pairs tested
• Each element can output 0 or 1 element
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Generalization of Pack: Expand
• Each element can output any number of elements
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Generalization of Pack: Expand
• Each element can output any number of elements
• Results are fused together in order
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