
AMS 250: An Introduction toHigh Performance Computing
Map and ReducePatterns

Shawfeng Dong
shaw@ucsc.edu
(831) 459-2725

Astronomy & Astrophysics
University of California, Santa Cruz

Outline
• Map pattern

• Optimizations
• Example: Scaled Vector Addition (SAXPY)

• Collectives
• Reduce Pattern
• Scan Pattern
• Gather Pattern
• Scatter Pattern
• Pack Pattern

2Introduction to Parallel Computing, University of Oregon, IPCC

Mapping
• “Do the same thing many times”

foreach i in foo:
do something

• Well-known higher order function in Functional Languages like Haskell, ML, Scala:
map :: (a -> b) -> [a] -> [b]

applies a function to each element in a list and returns a list of results

3Introduction to Parallel Computing, University of Oregon, IPCC

4

Example Maps
Add 1 to every item in an array Double every item in an array

0 4 5 3 1 0
0 1 2 3 4 5

1 5 6 4 2 1

3 7 0 1 4 0

6 14 0 2 8 0

0 1 2 3 4 5

Key Point: An operation is a map if it can be applied to each element without knowledge of neighbors.
Introduction to Parallel Computing, University of Oregon, IPCC

Key Idea
• Map is a “foreach loop” where each iteration is independent

5

Embarrassingly Parallel
Independence is a big win. We can run map completely in parallel.
Significant speedups! More precisely: T(n) is O(1) plus implementation
overhead that is O(log n); so T(n) = O(log n).

Introduction to Parallel Computing, University of Oregon, IPCC

Sequential Map

for (int n=0; n< array.length; ++n)
{

process(array[n]);
}

6

Tim
e

Introduction to Parallel Computing, University of Oregon, IPCC

Parallel Map

parallel_for_each (x in array)
{

process(x);
}

7

Tim
e

Introduction to Parallel Computing, University of Oregon, IPCC

Comparing Maps
Serial Map

8

Parallel Map

Speedup
The space here is speedup. With the
parallel map, our program finished
execution early, while the serial map is
still running.

Introduction to Parallel Computing, University of Oregon, IPCC

Independence
• The key to (embarrassing) parallelism is independence

• Modifying shared state breaks perfect independence
• Results of accidentally violating independence:

• non-determinism
• data-races
• undefined behavior
• segfaults

9

Map function should be “pure” (or “pure-ish”) and should not
modify shared states

Warning: No shared state!

Introduction to Parallel Computing, University of Oregon, IPCC

Implementation and API
• OpenMP and Cilk Plus contain a parallel for language construct
• Map is a mode of use of parallel for
• TBB uses higher order functions with lambda expressions/“functors”
• Some languages (Cilk Plus, Matlab, Fortran) provide array notation which makes some maps more concise

10

A[:] = A[:]*5;
is Cilk Plus array notation for “multiply every element in A by 5”

Array Notation

Introduction to Parallel Computing, University of Oregon, IPCC

Unary Maps

11

So far we have only dealt with mapping over a single collection…
Unary Maps

Introduction to Parallel Computing, University of Oregon, IPCC

12

Map with 1 Input and 1 Output
x 3 7 0 1 4 0 0 4 5 3 1 0

0 1 2 3 4 5 6 7 8 9 10 11

6 14 0 2 8 0 0 8 10 6 2 0result

int oneToOne (int x[11]) {
return x*2;

}

Introduction to Parallel Computing, University of Oregon, IPCC

N-ary Maps

13

But sometimes it makes sense to map over multiple collections at once…
N-ary Maps

Introduction to Parallel Computing, University of Oregon, IPCC

14

Map with 2 Inputs and 1 Output
x 3 7 0 1 4 0 0 4 5 3 1 0

0 1 2 3 4 5 6 7 8 9 10 11

5 11 2 2 12 3 9 9 10 4 3 1result

y 2 4 2 1 8 3 9 5 5 1 2 1

int twoToOne (int x[11], int y[11]) {
return x+y;

}

Introduction to Parallel Computing, University of Oregon, IPCC

Optimization – Sequences of Maps
• Often several map operations occur in sequence

• Vector math consists of many small operations such as additions and multiplications applied as maps
• A naïve implementation may write each intermediate result to memory, wasting memory bandwidth and likely overwhelming the cache

15Introduction to Parallel Computing, University of Oregon, IPCC

Optimization – Code Fusion
• Can sometimes “fuse” together the operations to perform them at once
• Adds arithmetic intensity, reduces memory/cache usage
• Ideally, operations can be performed using registers alone

16Introduction to Parallel Computing, University of Oregon, IPCC

Optimization – Cache Fusion
• Sometimes impractical to fuse together the map operations
• Can instead break the work into blocks, giving each CPU one block at a time
• Hopefully, operations use cache alone

17Introduction to Parallel Computing, University of Oregon, IPCC

Example: Scaled Vector Addition (SAXPY)
• y ← ax + y

• Scales vector x by a and adds it to vector y
• Result is stored in input vector y

• A level-1 routine in the BLAS (Basic Linear Algebra Subprograms)library
• Every element in vector x and vector y are independent

18Introduction to Parallel Computing, University of Oregon, IPCC

What does y ← ax + y look like?

19

a 4 4 4 4 4 4 4 4 4 4 4 4
0 1 2 3 4 5 6 7 8 9 10 11

11 23 8 5 36 12 36 49 50 7 9 4y

y 3 7 0 1 4 0 0 4 5 3 1 0
x 2 4 2 1 8 3 9 5 5 1 2 1*
+

Introduction to Parallel Computing, University of Oregon, IPCC

y ← ax + y Visual:

20

a 4 4 4 4 4 4 4 4 4 4 4 4
0 1 2 3 4 5 6 7 8 9 10 11

11 23 8 5 36 12 36 49 50 7 9 4y

y 3 7 0 1 4 0 0 4 5 3 1 0
x 2 4 2 1 8 3 9 5 5 1 2 1*
+

Twelve processors used one for each element in
the vector

Introduction to Parallel Computing, University of Oregon, IPCC

y ← ax + y Visual:

21

a 4 4 4 4 4 4 4 4 4 4 4 4
0 1 2 3 4 5 6 7 8 9 10 11

11 23 8 5 36 12 36 49 50 7 9 4y

y 3 7 0 1 4 0 0 4 5 3 1 0
x 2 4 2 1 8 3 9 5 5 1 2 1*
+

Six processors used one for every two elements in
the vector

Introduction to Parallel Computing, University of Oregon, IPCC

y ← ax + y Visual:

22

a 4 4 4 4 4 4 4 4 4 4 4 4
0 1 2 3 4 5 6 7 8 9 10 11

11 23 8 5 36 12 36 49 50 7 9 4y

y 3 7 0 1 4 0 0 4 5 3 1 0
x 2 4 2 1 8 3 9 5 5 1 2 1*
+

Two processors used one for every six elements
in the vector

Introduction to Parallel Computing, University of Oregon, IPCC

23

Serial SAXPY Implementation

Introduction to Parallel Computing, University of Oregon, IPCC

24

OpenMP SAXPY Implentation

Introduction to Parallel Computing, University of Oregon, IPCC

25

TBB SAXPY Implementation

Introduction to Parallel Computing, University of Oregon, IPCC

26

Cilk Plus SAXPY Implementation

Introduction to Parallel Computing, University of Oregon, IPCC

Collectives
• Collective operations deal with a collection of data as a whole, rather than as separate elements
• Collective patterns include:

• Reduce
• Scan
• Gather
• Scatter
• Pack

27Introduction to Parallel Computing, University of Oregon, IPCC

Reduce
• Reduce is used to combine a collection of elements into one summary value
• A combiner function combines elements pairwise
• A combiner function only needs to be associative to be parallelizable
• Example combiner functions:

• Addition
• Multiplication
• Maximum / Minimum

28Introduction to Parallel Computing, University of Oregon, IPCC

Serial vs. Parallel Reduce

29

Serial Reduction Parallel Reduction

Introduction to Parallel Computing, University of Oregon, IPCC

Tiled Reduce
• Tiling is used to break chunks of work up for workers to reduce serially

30Introduction to Parallel Computing, University of Oregon, IPCC

Serial Reduce – Add Example

31

1 2 45 9 7 0 1

28

12

3
8

21

29
28

29
Introduction to Parallel Computing, University of Oregon, IPCC

Parallel Reduce – Add Example

32

1 2 45 9 7 0 1

3 9 116

12 17

29

29
Introduction to Parallel Computing, University of Oregon, IPCC

Fused Map and Reduce
• We can “fuse” the map and reduce patterns

33Introduction to Parallel Computing, University of Oregon, IPCC

Precision
• Precision can become a problem with reductions on floating point data
• Different orderings of floating point data can change the reduction value

34Introduction to Parallel Computing, University of Oregon, IPCC

(1.0 + 1.0e10) + -1.0e10
= 1.0e10 + -1.0e10
= 0.0but

1.0 + (1.0e10 + -1.0e10)
= 1.0 + 0.0
= 1.0

Reduce Example: Dot Product
• 2 vectors of same length
• Map (*) to multiply the components
• Then reduce with (+) to get the final answer

35Introduction to Parallel Computing, University of Oregon, IPCC

ିଵ

ୀ

Scan
• The scan pattern produces partial reductions of input sequence, generates new sequence
• Trickier to parallelize than reduce
• Inclusive scan vs. exclusive scan

• Inclusive scan: includes current element in partial reduction
• Exclusive scan: excludes current element in partial reduction, partial reduction is of all prior elements prior to current element

36Introduction to Parallel Computing, University of Oregon, IPCC

Scan – Example Uses
• Lexical comparison of strings – e.g., determine that “strategy” should appear before “stratification” in a dictionary
• Add multi-precision numbers (those that cannot be represented in a single machine word)
• Evaluate polynomials
• Implement radix sort or quicksort
• Delete marked elements in an array
• Dynamically allocate processors
• Lexical analysis – parsing programs into tokens
• Searching for regular expressions
• Labeling components in 2-D images
• Some tree algorithms – e.g., finding the depth of every vertex in a tree

37Introduction to Parallel Computing, University of Oregon, IPCC

Serial vs. Parallel Scan

38

Serial Scan

Parallel Scan

Introduction to Parallel Computing, University of Oregon, IPCC

Scan
• One algorithm for parallelizing scan is to perform an “up sweep” and a “down sweep”
• Reduce the input on the up sweep
• The down sweep produces the intermediate results

39

Up sweep – compute reduction

Down sweep – compute intermediate values

Introduction to Parallel Computing, University of Oregon, IPCC

Scan – Maximum Example

40

1 2 7 2 4 34 0

1 2 7 2 4 34 0

1 1

4

4

4

44

4

4

4

44

4 2

4

7

7
7

7

7

7

7
7

7

7
7

7
7

7
7

4

777

Introduction to Parallel Computing, University of Oregon, IPCC

Tiled Scan

41Introduction to Parallel Computing, University of Oregon, IPCC

Three phase scan with tiling

Fused Map and Scan
• We can also fuse the map pattern with the scan pattern

42Introduction to Parallel Computing, University of Oregon, IPCC

Data Movement
• Performance is often more limited by data movement than by computation

• Transferring data across memory layers is costly
• locality is important to minimize data access times
• data organization and layout can impact this• Transferring data across networks can take many cycles
• attempting to minimize the # messages and overhead is important• Data movement also costs more in power

• For “data intensive” application, it is a good idea to design the data movement first
• Design the computation around the data movements
• Applications such as search and sorting are all about data movement and reorganization

43Introduction to Parallel Computing, University of Oregon, IPCC

Parallel Data Reorganization
• Remember we are looking to do things in parallel
• How to be faster than the sequential algorithm?
• Similar consistency issues arise as when dealing with computation parallelism
• Here we are concerned more with parallel data movement and management issues
• Might involve the creation of additional data structures (e.g., for holding intermediate data)

44Introduction to Parallel Computing, University of Oregon, IPCC

Gather Pattern
• Gather pattern creates an (output) collection of data by reading from another (source) data collection

• Given a collection of (ordered) indices
• Read data from the source collection at each index
• Write data to the output collection in index order

• Transfers from source collection to output collection
• Element type of output collection is the same as the source
• Shape of the output collection is that of the index collection

• same dimensionality
• Can be considered a combination of map and random serial read operations

• Essentially does a number of random reads in parallel
45Introduction to Parallel Computing, University of Oregon, IPCC

Gather: Defined

Given a collection of read locations
• address or array indices

46Introduction to Parallel Computing, University of Oregon, IPCC

Gather: Defined

Given a collection of read locations
• address or array indices
and a source array

47Introduction to Parallel Computing, University of Oregon, IPCC

Gather: Defined

Given a collection of read locations
• address or array indices
and a source array
gather all the data from the source array at the given locations and places them into an output collection

48Introduction to Parallel Computing, University of Oregon, IPCC

Gather: Defined

Given a collection of read locations
• address or array indices
and a source array
gather all the data from the source array at the given locations and places them into an output collection

49

What value should go into index
1 of output collection??

Introduction to Parallel Computing, University of Oregon, IPCC

Gather: Defined

Given a collection of read locations
• address or array indices
and a source array
gather all the data from the source array at the given locations and places them into an output collection

50

Read the value at index 1 of
source array?

Introduction to Parallel Computing, University of Oregon, IPCC

Gather: Defined

Given a collection of read locations
• address or array indices
and a source array
gather all the data from the source array at the given locations and places them into an output collection

51

Read the value at index 5 of
locations array?

Introduction to Parallel Computing, University of Oregon, IPCC

Gather: Defined

Given a collection of read locations
• address or array indices
and a source array
gather all the data from the source array at the given locations and places them into an output collection

52

Map value stored at index 5 of locations
array into output collection

Introduction to Parallel Computing, University of Oregon, IPCC

Gather: Defined

Given a collection of read locations
• address or array indices
and a source array
gather all the data from the source array at the given locations and places them into an output collection

53

Sequential order

Where is the parallelism?

Introduction to Parallel Computing, University of Oregon, IPCC

Quiz 1
Given the following source and locations array, use a gather to determine what values should go into the output collection:

54

3 7 0 1 4 0 0 4 5 3 1 0
0 1 2 3 4 5 6 7 8 9 10 11

1 9 6 9 3

? ? ? ? ?

Introduction to Parallel Computing, University of Oregon, IPCC

locations
source

Quiz 1 Answer
Given the following source and locations array, use a gather to determine what values should go into the output collection:

55

3 7 0 1 4 0 0 4 5 3 1 0
0 1 2 3 4 5 6 7 8 9 10 11

1 9 6 9 3

7 3 0 3 1

Introduction to Parallel Computing, University of Oregon, IPCC

locations
source

Gather: Array Size

• Output data collection has the same number of elements as the number of indices in the index collection
• Same dimensionality

56Introduction to Parallel Computing, University of Oregon, IPCC

Gather: Array Type

• Output data collection has the same number of elements as the number of indices in the index collection
• Elements of the output collection are the same type as the input data collection

57Introduction to Parallel Computing, University of Oregon, IPCC

Gather: Serial Implementation

58Introduction to Parallel Computing, University of Oregon, IPCC

Serial implementation of gather in pseudocode

Gather: Serial Implementation

59Introduction to Parallel Computing, University of Oregon, IPCC

Serial implementation of gather in pseudocodeDo you see opportunities for parallelism?

Gather: Serial Implementation

60Introduction to Parallel Computing, University of Oregon, IPCC

Serial implementation of gather in pseudocodeAre there any conflicts that arise?

Parallelize over
for loop to
perform random
read

Gather: Defined (parallel perspective)
• Results from the combination of a map with a random read

• Simple pattern, but with many special cases that make the implementation more efficient

61Introduction to Parallel Computing, University of Oregon, IPCC

Special Case of Gather: Shifts

• Moves data to the left or right in memory
• Data accesses are offset by fixed distances

62

duplicate

rotate

Introduction to Parallel Computing, University of Oregon, IPCC

More about Shifts
• Regular data movement
• Variants from how boundary conditions handled

• Requires “out of bounds” data at edge of the array
• Options: default value, duplicate, rotate

• Shifts can be handled efficiently with vector instructions because of regularity
• Shift multiple data elements at the same time

• Shifts can also take advantage of good data locality

63Introduction to Parallel Computing, University of Oregon, IPCC

Special Case of Gather: Zip

• Function is to interleaves data (like a zipper)

64

Where is the parallelism?

Introduction to Parallel Computing, University of Oregon, IPCC

Zip Example

• Given two separate arrays of real parts and imaginary parts
• Use zip to combine them into a sequence of real and imaginary pairs

65

Array of Real Parts

Array of Imaginary Parts

Combined Sequence of
Real and Imaginary Parts

Introduction to Parallel Computing, University of Oregon, IPCC

Special Case of Gather: Unzip

• Reverses a zip
• Extracts sub-arrays at certain offsets and strides from an input array

66

Where is the parallelism?

Introduction to Parallel Computing, University of Oregon, IPCC

Unzip Example

• Given a sequence of complex numbers organized as pairs
• Use unzip to extract real and imaginary parts into separate arrays

67

Array of Real Parts

Array of Imaginary Parts

Combined Sequence of
Real and Imaginary Parts

Introduction to Parallel Computing, University of Oregon, IPCC

Gather vs. Scatter
Gather
Combination of map with random reads
Read locations provided as input

Scatter
Combination of map with random writes
Write locations provided as input
Race conditions … Why?

68Introduction to Parallel Computing, University of Oregon, IPCC

Scatter: Defined

Given a collection of input data

69Introduction to Parallel Computing, University of Oregon, IPCC

Scatter: Defined

Given a collection of input dataand a collection of write locations

70Introduction to Parallel Computing, University of Oregon, IPCC

Scatter: Defined

Given a collection of input dataand a collection of write locationsscatter data to the output collection
Problems?
Does the output collection have to be larger in size?

71

Where is the parallelism?

Introduction to Parallel Computing, University of Oregon, IPCC

Quiz 2
Given the following input and locations array, what values should go into the output collection:

72

3 7 0 1 4 0 0 4 5 3 1 0
0 1 2 3 4 5 6 7 8 9 10 11

2 4 1 5 5 0 4 2 1 2 1 4

? ? ? ? ?

Introduction to Parallel Computing, University of Oregon, IPCC

locations
input

Quiz 2 Answer
Given the following input and locations array, what values should go into the output collection:

73

3 7 0 1 4 0 0 4 5 3 1 0
0 1 2 3 4 5 6 7 8 9 10 11

2 4 1 5 5 0 4 2 1 2 1 4

0 1 3 0 4

Introduction to Parallel Computing, University of Oregon, IPCC

locations
input

Scatter: Serial Implementation

Serial implementation of scatter in pseudocode
74

Parallelize over
for loop to
perform random
write

Introduction to Parallel Computing, University of Oregon, IPCC

Scatter: Defined
• Results from the combination of a map with a random write
• Writes to the same location are possible
• Parallel writes to the same location are collisions

75Introduction to Parallel Computing, University of Oregon, IPCC

Scatter: Race Conditions

Given a collection of input dataand a collection of write locationsscatter data to the output collection

76

Race Condition: Two (or more) values being written to
the same location in output collection. Result is undefined
unless enforce rules. Need rules to resolve collisions!

Introduction to Parallel Computing, University of Oregon, IPCC

Collision Resolution: Atomic Scatter

• Non-deterministic approach
• Upon collision, one and only one of the values written to a location will be written in its entirety

77

Values “D” and “E” will collide at
output collection index 2

Introduction to Parallel Computing, University of Oregon, IPCC

Collision Resolution: Atomic Scatter

• Non-deterministic approach
• Upon collision, one and only one of the values written to a location will be written in its entirety
• No rule determines which of the input items will be retained

78

Values “D” and “E” will collide at
output collection index 2

Introduction to Parallel Computing, University of Oregon, IPCC

Either “D” or “E”

Collision Resolution: Atomic Scatter

• Non-deterministic approach
• Upon collision, one and only one of the values written to a location will be written in its entirety
• No rule determines which of the input items will be retained

79

Values “D” and “E” will collide at
output collection index 2

Introduction to Parallel Computing, University of Oregon, IPCC

Either “D” or “E”

Collision Resolution: Permutation Scatter

• Pattern simply states that collisions are illegal
• Output is a permutation of the input

• Check for collisions in advance turn scatter into gather
• Examples

• FFT scrambling, matrix/image transpose, unpacking
80Introduction to Parallel Computing, University of Oregon, IPCC

Collision Resolution: Merge Scatter

• Associative and commutative operators are provided to merge elements in case of a collision

81Introduction to Parallel Computing, University of Oregon, IPCC

Collision!

Collision Resolution: Merge Scatter

• Associative and commutative operators are provided to merge elements in case of a collision
• Use addition as the merge operator
• Both associative and commutative properties are required since scatters to a particular location could occur in any order

82Introduction to Parallel Computing, University of Oregon, IPCC

Collision Resolution: Priority Scatter

• Every element in the input array is assigned a priority based on its position
• Priority is used to decide which element is written in case of a collision
• Example

• 3D graphics rendering
83Introduction to Parallel Computing, University of Oregon, IPCC

Converting Scatter to Gather
• Scatter is a more expensive than gather

• Writing has cache line consequences
• May cause additional reading due to cache conflicts
• False sharing is a problem that arises

• writes from different cores go to the same cache line
• Can avoid problems if addresses are know “in advance”

• Allows optimizations to be applied
• Convert addresses for a scatter into those for a gather
• Useful if the same pattern of scatter address will be used repeatedly so the cost is amortized

84Introduction to Parallel Computing, University of Oregon, IPCC

Pack
• Used to eliminate unused elements from a collection
• Retained elements are moved so they are contiguous in memory

85Introduction to Parallel Computing, University of Oregon, IPCC

Unpack
• Inverse of pack operation
• Given the same data on which elements were kept and which were discarded, spread elements back in their original locations

86Introduction to Parallel Computing, University of Oregon, IPCC

Generalization of Pack: Split
• Generalization of pack pattern
• Elements are moved to upper or lower half of output collection based on some state
• Does not lose information like pack

87

Upper half of output
collection: values equal to 0

Introduction to Parallel Computing, University of Oregon, IPCC

Generalization of Pack: Split
• Generalization of pack pattern
• Elements are moved to upper or lower half of output collection based on some state
• Does not lose information like pack

88Introduction to Parallel Computing, University of Oregon, IPCC

Lower half of output
collection: values equal to 1

Generalization of Pack: Unsplit
• Inverse of split
• Creates output collection based on original input collection

89Introduction to Parallel Computing, University of Oregon, IPCC

Generalization of Pack: Bin
• Generalized split to support more categories (>2)
• Examples

• Radix sort
• Pattern classification

90

4 different categories = 4 bins

Introduction to Parallel Computing, University of Oregon, IPCC

Fusion of Map and Pack
• Advantageous if most of the elements of a map are discarded
• Map checks pairs for collision
• Pack stores only actual collisions
• Output bandwidth ~ results reported, not number of pairs tested
• Each element can output 0 or 1 element

91Introduction to Parallel Computing, University of Oregon, IPCC

Generalization of Pack: Expand
• Each element can output any number of elements

92Introduction to Parallel Computing, University of Oregon, IPCC

Generalization of Pack: Expand
• Each element can output any number of elements
• Results are fused together in order

93Introduction to Parallel Computing, University of Oregon, IPCC

