
AMS 250: An Introduction toHigh Performance Computing
Parallel Programming PatternsOverview

Shawfeng Dong
shaw@ucsc.edu
(831) 459-2725

Astronomy & Astrophysics
University of California, Santa Cruz

Outline
• Parallel programming models
• Dependencies
• Structured programming patterns overview

2Introduction to Parallel Computing, University of Oregon, IPCC

Sequential Models
• von Neumann model

• Processing Unit, containing:
• Arithmetic Logic Unit, with processor registers
• Control Unit, with instructor registers and program counter• Memory, which stores both data and instructions

• External mass storage and I/O mechanism
• Stored-program computer

• CPU fetches instructions from memory, reads data from memory, decodes and executes instructions sequentially, then writes data back to memory
• Harvard model

• one dedicated set of address and data buses for reading data from and writing data to memory
• another set of address and data buses for fetching instructions

3

Parallel Models 101
• A parallel computer is simply a collection of processors interconnectedin some manner to coordinate activities and exchange data
• Parallel models are those theoretical models that can be used as general frameworks for describing and analyzing parallel algorithms

• Simplicity: description, analysis, architecture independence
• Implementability: able to be realized, reflect performance

• Three common parallel models
• Directed acyclic graphs, shared-memory, network

4Introduction to Parallel Computing, University of Oregon, IPCC

Directed Acyclic Graphs (DAG)
• Captures data flow parallelism
• Nodes represent operations to be performed

• Inputs are nodes with no incoming arcs
• Output are nodes with no outgoing arcs
• Think of nodes as tasks

• Arcs are paths for flow of data results
• DAG represents the operations of the algorithm and implies precedent constraints on their order

a[0] a[1] a[99]…

5Introduction to Parallel Computing, University of Oregon, IPCC

for (i=1; i<100; i++)
a[i] = a[i-1] + 100;

Shared Memory Model
• Parallel extension of RAM model (PRAM)

• Memory size is infinite
• Number of processors in unbounded
• Processors communicate via the memory
• Every processor accesses any memorylocation in 1 cycle
• Synchronous

• All processors execute same algorithm synchronously
• READ phase
• COMPUTE phase
• WRITE phase

• Some subset of the processors can stay idle
• Asynchronous

6

SharedMemory
P3

PN

P1
P2

...

Introduction to Parallel Computing, University of Oregon, IPCC

Network Model
• G = (N,E)

• N are processing nodes
• E are bidirectional communication links

• Each processor has its own memory
• No shared memory is available
• Network operation may be synchronous or asynchronous
• Requires communication primitives

• Send (X, i)
• Receive (Y, j)

• Captures message passing model for algorithm design

P31

PN1

P11
P21

...

P32

PN2

P12
P22

...

P3N

PNN

P1N
P2N

...

7Introduction to Parallel Computing, University of Oregon, IPCC

Parallelism
• Ability to execute different parts of a computation concurrently on multiple processing elements
• Why do you want parallelism?

• Shorter running time or handling more work
• What is being parallelized?

• Task: instruction, statement, procedure, …
• Data: data flow, size, replication
• Parallelism granularity

• Coarse-grained versus fine-grained
• Thinking about parallelism
• Evaluation

8Introduction to Parallel Computing, University of Oregon, IPCC

Parallel Algorithm
• Recipe to solve a problem “in parallel” on multiple processing elements
• Standard steps for constructing a parallel algorithm

• Identify work that can be performed concurrently
• Partition the concurrent work on separate processors
• Properly manage input, output, and intermediate data
• Coordinate data accesses and work to satisfy dependencies

9Introduction to Parallel Computing, University of Oregon, IPCC

Parallelism Views
• Where can we find parallelism?
• Program (task) view

• Statement level
• Between program statements
• Which statements can be executed at the same time?

• Block level / Loop level / Routine level / Process level
• Larger-grained program statements

• Data view
• How is data operated on?
• Where does data reside?

• Resource view
10Introduction to Parallel Computing, University of Oregon, IPCC

Parallelism, Correctness, and Dependence
• Parallel execution, from any point of view, will be constrained by the sequence of operations needed to be performed for a correct result
• Parallel execution must address control, data, and system dependences
• A dependency arises when one operation depends on an earlier operation to complete and produce a result before this later operation can be performed
• We extend this notion of dependency to resources since some operations may depend on certain resources

• For example, due to where data is located

11Introduction to Parallel Computing, University of Oregon, IPCC

Executing Two Statements in Parallel
• Want to execute two statements in parallel
• On one processor:

statement 1;
statement 2;

• On two processors:
Processor 1: Processor 2:

statement 1; statement 2;
• Fundamental (concurrent) execution assumption

• Processors execute independently of each other
• No assumption made about speed of processor execution

12Introduction to Parallel Computing, University of Oregon, IPCC

Sequential Consistency in Parallel Execution
• Case 1:

Processor 1: Processor 2:
statement 1;

statement 2;
• Case 2:

Processor 1: Processor 2:
statement 2;

statement 1;
• Sequential consistency

• Statements execution does not interfere with each other
• Computation results are the same (independent of order)

time

time

13Introduction to Parallel Computing, University of Oregon, IPCC

Independent versus Dependent
• In other words the execution of

statement1;
statement2;

must be equivalent to
statement2;
statement1;

• Their order of execution must not matter!
• If true, the statements are independent of each other
• Two statements are dependent when the order of their execution affects the computation outcome

14Introduction to Parallel Computing, University of Oregon, IPCC

Examples
• Example 1

S1: a=1;
S2: b=1;

• Example 2
S1: a=1;
S2: b=a;

• Example 3
S1: a=f(x);
S2: a=b;

• Example 4
S1: a=b;
S2: b=1;

 Statements are independent

 Dependent (true (flow) dependence)
 Second is dependent on first
 Can you remove dependency?

 Dependent (output dependence)
 Second is dependent on first
 Can you remove dependency? How?

 Dependent (anti-dependence)
 First is dependent on second
 Can you remove dependency? How?

15Introduction to Parallel Computing, University of Oregon, IPCC

True Dependence and Anti-Dependence
• Given statements S1 and S2,

S1;
S2;

• S2 has a true (flow) dependence on S1
if and only if

S2 reads a value written by S1
• S2 has a anti-dependence on S1

if and only if
S2 writes a value read by S1

X =
= X

...

= X
X =

... -1

16Introduction to Parallel Computing, University of Oregon, IPCC

Output Dependence
• Given statements S1 and S2,

S1;
S2;

• S2 has an output dependence on S1
if and only if

S2 writes a variable written by S1
• Anti- and output dependences are “name” dependencies

• Are they “true” dependences?
• How can you get rid of output dependences?

• Are there cases where you can not?

X =
X =

... 0

17Introduction to Parallel Computing, University of Oregon, IPCC

Statement Dependency Graphs
• We can use graphs to show dependence relationships
• Example

S1: a=1;
S2: b=a;
S3: a=b+1;
S4: c=a;

• S2 S3 : S3 is flow-dependent on S2
• S1 0 S3 : S3 is output-dependent on S1
• S2 -1 S3 : S3 is anti-dependent on S2

S1
S2
S3
S4

flow
antioutput

18Introduction to Parallel Computing, University of Oregon, IPCC

When can two statements execute in parallel?
• Statements S1 and S2 can execute in parallel if and only if there are no dependences between S1 and S2

• True dependences
• Anti-dependences
• Output dependences

• Some dependences can be remove by modifying the program
• Rearranging statements
• Eliminating statements

19Introduction to Parallel Computing, University of Oregon, IPCC

How do you compute dependence?
• Data dependence relations can be found by comparing the IN and OUT sets of each node
• The IN and OUT sets of a statement S are defined as:

• IN(S) : set of memory locations (variables) that may be used in S
• OUT(S) : set of memory locations (variables) that may be modified by S

• Note that these sets include all memory locations that may be fetched or modified
• As such, the sets can be conservatively large

20Introduction to Parallel Computing, University of Oregon, IPCC

IN / OUT Sets and Computing Dependence
• Assuming that there is a path from S1 to S2 , the following shows how to intersect the IN and OUT sets to test for data dependence

dependenceoutput)()(

dependence-anti)()(
dependence flow

2
0

121
2

1
121

2121

SSSoutSout
SSSoutSin
SSSinSout

21Introduction to Parallel Computing, University of Oregon, IPCC

Loop-Level Parallelism
• Significant parallelism can be identified within loops
for (i=0; i<100; i++)

S1: a[i] = i;

• Dependencies? What about i, the loop index?
• DOALL loop (a.k.a. foreach loop)

• All iterations are independent of each other
• All statements be executed in parallel at the same time

for (i=0; i<100; i++) {
S1: a[i] = i;
S2: b[i] = 2*i;

}

22Introduction to Parallel Computing, University of Oregon, IPCC

Iteration Space
• Unroll loop into separate statements / iterations
• Show dependences between iterations
for (i=0; i<100; i++)

S1: a[i] = i;

S10

S20

for (i=0; i<100; i++) {
S1: a[i] = i;
S2: b[i] = 2*i;

}

S11

S21
S199

S299
S10 S11 S199… …

23Introduction to Parallel Computing, University of Oregon, IPCC

Multi-Loop Parallelism
• Significant parallelism can be identified between loops
for (i=0; i<100; i++) a[i] = i;
for (i=0; i<100; i++) b[i] = i;

• Dependencies?
• How much parallelism is available?
• Given 4 processors, how much parallelism is possible?
• What parallelism is achievable with 50 processors?

a[0] a[1] a[99]…
b[0] b[1] b[99]…

24Introduction to Parallel Computing, University of Oregon, IPCC

Loops with Dependencies
Case 1:
for (i=1; i<100; i++)

a[i] = a[i-1] + 100;

• Dependencies?
• What type?

• Is the Case 1 loop parallelizable?
• Is the Case 2 loop parallelizable?

Case 2:
for (i=5; i<100; i++)

a[i-5] = a[i] + 100;
a[0] a[1] a[99]… a[0] a[5] a[10] …

a[1] a[6] a[11] …
a[2] a[7] a[12] …
a[3] a[8] a[13] …
a[4] a[9] a[14] …

25Introduction to Parallel Computing, University of Oregon, IPCC

Another Loop Example
for (i=1; i<100; i++)

a[i] = f(a[i-1]);

• Dependencies?
• What type?

• Loop iterations are not parallelizable
• Why not?

26Introduction to Parallel Computing, University of Oregon, IPCC

Loop Dependencies
• A loop-carried dependence is a dependence that is present only if the statements are part of the execution of a loop (i.e., between two statements instances in two different iterations of a loop)
• Otherwise, it is loop-independent, including between two statements instances in the same loop iteration
• Loop-carried dependences can prevent loop iteration parallelization
• The dependence is lexically forward if the source comes before the target or lexically backward otherwise

• Unroll the loop to see

27Introduction to Parallel Computing, University of Oregon, IPCC

Loop Dependence Example
for (i=0; i<100; i++)

a[i+10] = f(a[i]);

• Dependencies?
• Between a[10], a[20], …
• Between a[11], a[21], …

• Some parallel execution is possible
• How much?

28Introduction to Parallel Computing, University of Oregon, IPCC

Dependences Between Iterations
for (i=1; i<100; i++) {

S1: a[i] = …;
S2: … = a[i-1];

}

• Dependencies?
• Between a[i] and a[i-1]

• Is parallelism possible?
• Statements can be executed in “pipeline” manner

i1 2 3 4 5 6

S1
S2

…

29Introduction to Parallel Computing, University of Oregon, IPCC

Another Loop Dependence Example
for (i=0; i<100; i++)

for (j=1; j<100; j++)
a[i][j] = f(a[i][j-1]);

• Dependencies?
• Loop-independent dependence on i
• Loop-carried dependence on j

• Which loop can be parallelized?
• Outer loop parallelizable
• Inner loop cannot be parallelized

30Introduction to Parallel Computing, University of Oregon, IPCC

Still Another Loop Dependence Example
for (j=1; j<100; j++)

for (i=0; i<100; i++)
a[i][j] = f(a[i][j-1]);

• Dependencies?
• Loop-independent dependence on i
• Loop-carried dependence on j

• Which loop can be parallelized?
• Inner loop parallelizable
• Outer loop cannot be parallelized
• Less desirable (why?)

31Introduction to Parallel Computing, University of Oregon, IPCC

Key Ideas for Dependency Analysis
• To execute in parallel:

• Statement order must not matter
• Statements must not have dependences

• Some dependences can be removed
• Some dependences may not be obvious

32Introduction to Parallel Computing, University of Oregon, IPCC

Dependencies and Synchronization
• How is parallelism achieved when have dependencies?

• Think about concurrency
• Some parts of the execution are independent
• Some parts of the execution are dependent

• Must control ordering of events on different processors (cores)
• Dependencies pose constraints on parallel event ordering
• Partial ordering of execution action

• Use synchronization mechanisms
• Need for concurrent execution too
• Maintains partial order

33Introduction to Parallel Computing, University of Oregon, IPCC

Structured Programming with Patterns
• Patterns are “best practices” for solving specific problems.
• Patterns can be used to organize your code, leading to algorithms that are more scalable and maintainable.
• A pattern supports a particular “algorithmic structure” with an efficient implementation.
• Good parallel programming models support a set of useful parallel patterns with low-overhead implementations.

34
Graphical notation for the fundamental components of algorithms

The following patterns are the basis of “structured programming” for serial computation:
• Sequence
• Selection
• Iteration
• Nesting
• Functions
• Recursion

• Random read
• Random write
• Stack allocation
• Heap allocation
• Objects
• Closures

Compositions of structured serial control flow patterns can be used in place of unstructured mechanisms such as “goto.”Using these patterns, “goto” can (mostly) be eliminated and
the maintainability of software improved.

Structured Serial Patterns

3535

The following additional parallel patterns can be used for “structured parallel programming”:
• Superscalar sequence
• Speculative selection
• Map
• Recurrence
• Scan
• Reduce
• Pack/expand
• Fork/join
• Pipeline

• Partition
• Segmentation
• Stencil
• Search/match
• Gather
• Merge scatter
• Priority scatter
• Permutation scatter
• Atomic scatter

Using these patterns, threads and vector intrinsics can (mostly)
be eliminated and the maintainability of software improved.

Structured Parallel Patterns

3636

Some Basic Patterns
• Serial: Sequence
 Parallel: Superscalar Sequence
• Serial: Iteration
 Parallel: Map, Reduction, Scan, Recurrence…

F = f(A);
G = g(F);
B = h(G);

A serial sequence is executed in the exact order given:

(Serial) Sequence

3838

F = f(A);
G = g(F);
H = h(B,G);
R = r(G);
P = p(F);
Q = q(F);
S = s(H,R);
C = t(S,P,Q);

• Tasks ordered only by data dependencies• Tasks can run whenever input data is ready

Developer writes “serial” code:

Superscalar Sequence

3939

while (c) {
f();

}

The iteration pattern repeats some section of code as long as a condition holds

(Serial) Iteration

4040

Each iteration can depend on values computed in any earlier iteration.
The loop can be terminated at any point based on computations in any iteration

for (i = 0; i<n; ++i) {
f();

}

The iteration pattern repeats some section of code a specific number of times

(Serial) Countable Iteration

4141

This is the same as
i = 0;
while (i<n) {

f();
++i;

}

Parallel “Iteration”
• The serial iteration pattern actually maps to several different parallel patterns
• It depends on whether and how iterations depend on each other…
• Most parallel patterns arising from iteration require a fixed number of invocations of the body, known in advance

• Map replicates a function over every element of an index set• The index set may be abstract or associated with the elements of an array.

• Map replaces one specific usage of iteration in serial programs: independent operations.

for (i=0; i<n; ++i) {
f(A[i]);

}Examples: gamma correction and thresholding in images; color space conversions; Monte Carlo sampling; ray tracing.

Map

4343

• Reduction combines every element in a collection into one element using an associative operator.

Examples: averaging of Monte Carlo samples; convergence testing; image comparison metrics; matrix operations.

Reduction

4444

b = 0;
for (i=0; i<n; ++i) {

b += f(B[i]);
}
• Reordering of the operations is often needed to allow for parallelism. • A tree reordering requires associativity.

• Scan computes all partial reductions of a collection

• Operator must be (at least) associative.• Diagram shows one possible parallel implementation using three-phase strategy

A[0] = B[0] + init;
for (i=1; i<n; ++i) {

A[i] = B[i] + A[i-1];
}

Examples: random number generation, pack, tabulated integration, time series analysis

Scan

45

• Geometric decompositionbreaks an input collection into sub-collections• Partition is a special case where sub-collections do not overlap• Does not move data, it just provides an alternative “view” of its organizationExamples: JPG and other macroblockcompression; divide-and-conquer matrix multiplication; coherency optimization for cone-beam recon.

Geometric Decomposition/Partition

46

• Stencil applies a function to neighbourhoods of a collection.
• Neighbourhoods are given by set of relative offsets.
• Boundary conditions need to be considered, but majority of computation is in interior.

Examples: signal filtering including convolution, median, anisotropic diffusion

Stencil

47

• nD Stencil applies a function to neighbourhoods of an nD array• Neighbourhoods are given by set of relative offsets• Boundary conditions need to be considered

Examples: image filtering including convolution, median, anisotropic diffusion; simulation including fluid flow, electromagnetic, and financial PDE solvers, lattice QCD

nD Stencil

4848

for (int i = 1, i < N; i++)
for (int j = 1, j < M; j++)
a_new[i][j] = 0.25 *

(a[i-1][j] +
a[i+1][j] +
a[i][j-1] +
a[i][j+1]);

Vectorization can include converting regular reads into a set of shifts.
Strip-mining reuses previously read inputs within serialized chunks.

Implementing Stencil

49

• Recurrence results from loop nests with both input and output dependencies between iterations
• Can also result from iterated stencils

Examples: Simulation including fluid flow, electromagnetic, and financial PDE solvers, lattice QCD, sequence alignment and pattern matching

Recurrence

50

Recurrence
for (int i = 1; i < N; i++) {
for (int j = 1; j < M; j++) {
A[i][j] = f(
A[i-1][j],
A[i][j-1],
A[i-1][j-1],
B[i][j]);

}
}

• Multidimensional recurrences can always be parallelized• Leslie Lamport’s hyperplaneseparation theorem:• Choose hyperplane with inputs and outputs on opposite sides• Sweep through data perpendicular to hyperplane

Recurrence Hyperplane Sweep

52

• Rotate recurrence to see sweep more clearly

Rotated Recurrence

53

• Can partition recurrence to get a better compute vs. bandwidth ratio

Tiled Recurrence

54

• Remove all non-redundant data dependences

Tiled Recurrence

55

• Rotate back: same recurrence at a different scale!
• Leads to recursive cache-oblivious divide-and-conquer algorithm
• Implement with fork-join.

Recursively Tiled Recurrences

56

• Pipeline uses a sequence of stages that transform a flow of data
• Some stages may retain state
• Pipeline connects tasks in a producer-consumer manner

Examples: image filtering, data compression and decompression, signal processing

Pipeline

57

• Parallelize pipeline by• Running different stages in parallel• Running multiple copies of stateless stages in parallel
• Running multiple copies of stateless stages in parallel requires reordering of outputs
• Need to manage buffering between stages

Pipeline

58

Recursive Patterns
• Recursion is an important “universal” serial pattern

• Recursion leads to functional programming
• Iteration leads to procedural programming

• Structural recursion: nesting of components
• Dynamic recursion: nesting of behaviors

Nesting: Recursive Composition

6060

Nesting Pattern: A compositional pattern. Nesting allows other patterns to be composed in a hierarchy so that any task block in the above diagram can be replaced with a pattern with the same input/output and dependencies.

Fork-Join: Efficient Nesting
• Fork-join can be nested
• Spreads cost of work distribution and synchronization.

Recursive fork-join enables high parallelism.

61

Other Parallel Patterns
• Futures: similar to fork-join, but tasks do not need to be nested hierarchically
• Speculative Selection: general version of serial selection where the condition and both outcomes can all run in parallel
• Workpile: general map pattern where each instance of elemental function can generate more instances, adding to the “pile” of work
• Search: finds some data in a collection that meets some criteria
• Segmentation: operations on subdivided, non-overlapping, non-uniformly sized partitions of 1D collections
• Expand: a combination of pack and map
• Category Reduction: Given a collection of elements each with a label, find all elements with same label and reduce them

62Introduction to Parallel Computing, University of Oregon, IPCC

Parallel Patterns: Overview

6363

Semantics and Implementation
Semantics: What

• The intended meaning as seen from the “outside”
• For example, for scan: compute all partial reductions given an associative operatorImplementation: How
• How it executes in practice, as seen from the “inside”
• For example, for scan: partition, serial reduction in each partition, scan of reductions, serial scan in each partition.
• Many implementations may be possible
• Parallelization may require reordering of operations
• Patterns should not over-constrain the ordering; only the important ordering constraints are specified in the semantics
• Patterns may also specify additional constraints, i.e. associativity of operators

64

POSIX Threads
• POSIX standard multi-threading interface

• For general multi-threaded concurrent programming
• Defined as a set of C programming language types, functions and constants
• Largely independent across implementations, and broadly supported
• Common target for library and language implementation

• Provides primitives for
• Thread management - creating, joining threads etc.
• Synchronization

• POSIX Threads (pthreads) specification: http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/pthread.h.html
• POSIX Threads Programming tutorial: https://computing.llnl.gov/tutorials/pthreads/

65Introduction to Parallel Computing, University of Oregon, IPCC

C++11 Multithreading
• C++11 standardizes support for multithreaded programming:

• a memory model which allows multiple threads to co-exist in a program
• library support for interaction between threads

• C++11 standard library includes:
• Atomics
• Threads
• Mutexes
• Conditional Variables
• Futures and Promises

• C++11 multithreading reference: http://www.cplusplus.com/reference/multithreading/
• A good book on C++11 multithreading: C++ Concurrency in Action: Practical Multithreading, by Anthony Williams, Manning Publications, 2012 66

Grand Central Dispatch
• Developed by Apple
• Available on OS X 10.6 and later, iOS 4 and later

• Open-sourced under the Apache license: https://libdispatch.macosforge.org
• An implementation of task parallelism based on the thread pool pattern

• Still uses threads at the low level but abstracts them away from the programmer
• Allows tasks to be queued, then schedules them to execute on any of the available processor cores
• A task can be expressed either as a function or as a “block”
• Grand Central Dispatch (GCD) reference: https://developer.apple.com/library/ios/documentation/Performance/Reference/GCD_libdispatch_Ref/

67

Thread Building Blocks
• Threading Building Blocks (TBB) is a C++ template library developed by Intel for parallel programming on multi-core processors

• A TBB program specifies graphs of dependent tasks according to algorithms/patterns, instead of manipulating threads
• TBB implements work stealing to balance a parallel workload across available processing cores in order to increase core utilization and therefore scaling
• TBB includes efficient low-level primitives (atomics, memory allocation, etc.)

• TBB is available:
• both commercially as a binary distribution with support
• and as open-source software: https://www.threadingbuildingblocks.org/

• TBB tutorial: https://www.threadingbuildingblocks.org/intel-tbb-tutorial
68

TBB 4.0 Components

69

Synchronization Primitivesatomic, condition_variable[recursive_]mutex{spin,queuing,null} [_rw]_mutexcritical_section, reader_writer_lock

Task schedulertask_group, structured_task_grouptasktask_scheduler_inittask_scheduler_observer

Concurrent Containersconcurrent_hash_mapconcurrent_unordered_{map,set}concurrent_[bounded_]queueconcurrent_priority_queueconcurrent_vector

Memory Allocationtbb_allocatorzero_allocatorcache_aligned_allocatorscalable_allocator

Thread Local Storagecombinableenumerable_thread_specific

Threadsstd::thread

Parallel Algorithmsparallel_forparallel_for_eachparallel_invokeparallel_doparallel_scanparallel_sortparallel_[deterministic]_reduce

Macro Dataflowparallel_pipelinetbb::flow::...

Intel Cilk Plus
• Intel Cilk Plus is an extension to C and C++ that simplifies the expression of task and data parallelism:

• Fork-join parallel programming model
• Serial semantics if keywords are ignored (serial elision)
• Efficient work-stealing load balancing
• Supports vector parallelism via array slices and elemental functions

• Cilk Plus is available:
• both commercially as a binary distribution with support
• and as open-source software: https://www.cilkplus.org/

• Cilk Plus tutorial: https://www.cilkplus.org/cilk-plus-tutorial

70

Summary of Intel Cilk Plus

71

Thread Parallelismcilk_spawncilk_synccilk_for
Reducersreducerreducer_op{add,and,or,xor}reducer_{min,max}{_index}reducer_list_{append,prepend}reducer_ostreamreducer_stringholder

Vector Parallelismarray notation#pragma simdelemental functions

