
AMS 250: An Introduction toHigh Performance Computing
OpenMP Primer

Shawfeng Dong
shaw@ucsc.edu
(831) 459-2725

Astronomy & Astrophysics
University of California, Santa Cruz

2

double x, pi, step, sum=0.0;
int i;
step = 1./(double)num_steps;
struct timeval tv;
gettimeofday(&start, NULL);
// start time in milliseconds
start = (tv.tv_sec)*1000 + (tv.tv_usec)/1000;

for (i=0; i<num_steps; i++) {
x = (i + .5)*step;
sum = sum + 1.0/(1.+ x*x);

}
pi = 4.0*sum*step;
gettimeofday(&start, NULL);
stop = (tv.tv_sec)*1000 + (tv.tv_usec)/1000;

ିଵ ଶ
ଵ
Serial code:

#include <omp.h>
double x, pi, step, sum=0.0;
int i;
step = 1./(double)num_steps;
struct timeval tv;
gettimeofday(&start, NULL);
// start time in milliseconds
start = (tv.tv_sec)*1000 + (tv.tv_usec)/1000;
#pragma omp parallel for private(x) reduction(+:sum)
for (i=0; i<num_steps; i++) {

x = (i + .5)*step;
sum = sum + 1.0/(1.+ x*x);

}
pi = 4.0*sum*step;
gettimeofday(&start, NULL);
stop = (tv.tv_sec)*1000 + (tv.tv_usec)/1000;

OpenMP code:

It is that simple with OpenMP!

Full Disclosure
A lot of blatant plagiarism of Blaise Barney’s OpenMP tutorial at LLNL!
https://computing.llnl.gov/tutorials/openMP

3

Outline
• Introduction
• OpenMP Programming Model
• OpenMP API Overview
• Compiling OpenMP Programs
• OpenMP Directives
• Runtime Library Routines
• Environment Variables

4

What is OpenMP?
• http://openmp.org/
• Open specifications for Multi-Processing via collaborative work between interested parties from the hardware and software industry, government and academia
• An Application Program Interface (API) that may be used to explicitly direct multi-threaded, shared memory parallelism
• Comprised of three primary API components:• Compiler Directives• Runtime Library Routines• Environment Variables

5

OpenMP is NOT:
Meant for distributed memory parallel systems (by itself)
 Necessarily implemented identically by all vendors
 Guaranteed to make the most efficient use of shared memory
 Required to check for data dependencies, data conflicts, race conditions, or deadlocks
 Required to check for code sequences that cause a program to beclassified as non-conforming
Meant to cover compiler-generated automatic parallelization anddirectives to the compiler to assist such parallelization
 Designed to guarantee that input or output to the same file issynchronous when executed in parallel. The programmer isresponsible for synchronizing input and output.

6

Goals of OpenMP
• Standardization:

• Provide a standard among a variety of shared memory architectures/platforms
• Jointly defined and endorsed by a group of major computer hardware and software vendors

• Lean and Mean:
• Establish a simple and limited set of directives for programming shared memory machines.
• Significant parallelism can be implemented by using just 3 or 4 directives.
This goal is becoming less meaningful with each new release, apparently.

• Ease of Use:
• Provide capability to incrementally parallelize a serial program, unlike message-passing libraries which typically require an all or nothing approach
• Provide the capability to implement both coarse-grain and fine-grain parallelism

• Portability:
• The API is specified for C/C++ and Fortran
• Public forum for API and membership
• Most major platforms have been implemented, including Unix/Linux platforms and Windows

7

OpenMP History
• In the early 90's, vendors supplied, similar but diverging, directive-based Fortran programming extensions for shared-memory machines
• In 1994, first attempt at a standard was the draft for ANSI X3H5 - never adopted as distributed memory machines became popular
• Not long after this, newer shared memory machines became prevalent
• In the spring of 1997, the OpenMP standard specification took over where ANSI X3H5 had left off
• Led by the OpenMP Architecture Review Board (ARB)

8

Month/Year Version
Oct 1997 Fortran 1.0
Oct 1998 C/C++ 1.0
Nov 1999 Fortran 1.1
Nov 2000 Fortran 2.0
Mar 2002 C/C++ 2.0
May 2005 OpenMP 2.5
May 2008 OpenMP 3.0
Jul 2011 OpenMP 3.1
Jul 2013 OpenMP 4.0
Nov 2015 OpenMP 4.5

OpenMP 4.x
• OpenMP 4.x added support for:

• Programming of accelerator and GPU devices
• SIMD programming
• Better optimization using thread affinity
• Parallelization of loops with well-structured dependencies

• Note: this lecture mostly covers OpenMP version 3.1

9

Shared Memory Model
OpenMP is designed for multi-processor/core, shared memory machines. The underlying architecture can be shared memory UMA or NUMA.

10

Uniform Memory Access Non-Uniform Memory Access

Thread Based Parallelism
• OpenMP programs accomplish parallelism exclusively through the use of threads
• A thread of execution is the smallest unit of processing that can be scheduled by an operating system
• Threads exist within the resources of a single process
• Typically, the number of threads match the number of machine processors/cores. However, the actual use of threads is up to the application

11

Explicit Parallelism
• OpenMP is an explicit (not automatic) programming model, offering the programmer full control over parallelization.
• Parallelization can be as simple as taking a serial program and inserting compiler directives
• Or as complex as inserting subroutines to set multiple levels of parallelism, locks and even nested locks.

12

Fork-Join Model

OpenMP uses the fork-join model of parallel execution
• All OpenMP programs begin as a single process: the master thread. The master thread executes sequentially until the first parallel region construct is encountered.
• FORK: the master thread then creates a team of parallel threads.
• The statements in the program that are enclosed by the parallel region construct are then executed in parallel among the various team threads.
• JOIN: When the team threads complete the statements in the parallel region construct, they synchronize and terminate, leaving only the master thread.
• The number of parallel regions and the threads that comprise them are arbitrary. 13

OpenMP Programming Model
• Most OpenMP parallelism is specified through the use of compiler directives embedded in the source code
• The API allows nested parallelism (parallel regions inside other parallel regions)
• The API provides for the runtime environment to dynamically alter the number of threads used to execute parallel regions
• OpenMP specifies nothing about parallel I/O – important if multiple threads attempt to write/read from the same file
• OpenMP provides a "relaxed-consistency" and "temporary" view of thread memory – it is the programmer’s responsibility to insure a variable is FLUSHed by all threads as needed (FLUSH often)

14

OpenMP API Overview
• The OpenMP API is comprised of three distinct components. As of version 4.0:

• Compiler Directives (44)
• Runtime Library Routines (35)
• Environment Variables (13)

• The application developer decides how to employ these components. In the simplest case, only a few of them are needed.

15

Compiler Directives
• Compiler directives appear as comments in your source code and are ignored by compilers unless you tell them otherwise
• OpenMP compiler directives are used for various purposes:

• Spawning a parallel region
• Dividing blocks of code among threads
• Distributing loop iterations between threads
• Serializing sections of code
• Synchronization of work among threads

• Compiler directives have the following syntax:
sentinel directive-name [clause, ...]

e.g.:
16

Fortran !$OMP PARALLEL DEFAULT(SHARED) PRIVATE(BETA,PI)
C/C++ #pragma omp parallel default(shared) private(beta,pi)

Runtime Library Routines
• The OpenMP API includes an ever-growing number of runtime library routines, for a variety of purposes:

• Setting and querying the number of threads
• Querying a thread's unique identifier (thread ID), a thread's ancestor's identifier, the thread team size
• Setting and querying the dynamic threads feature
• Querying if in a parallel region, and at what level
• Setting and querying nested parallelism
• Setting, initializing and terminating locks and nested locks
• Querying wall clock time and resolution

e.g.:
17

Fortran INTEGER FUNCTION OMP_GET_NUM_THREADS()
C/C++ #include <omp.h>

int omp_get_num_threads(void)

Environment Variables
• OpenMP provides several environment variables for controlling the execution of parallel code at runtime:

• Setting the number of threads
• Specifying how loop iterations are divided
• Binding threads to processors
• Enabling/disabling nested parallelism; setting the maximum levels of nested parallelism
• Enabling/disabling dynamic threads
• Setting thread stack size
• Setting thread wait policy

e.g.:
18

sh/bash export OMP_NUM_THREADS=8
csh/tcsh setenv OMP_NUM_THREADS 8

Example OpenMP Code Structure

19

Fortran: C/C++:
PROGRAM HELLO
INTEGER VAR1, VAR2, VAR3
Serial code

.

.

.
Beginning of parallel section. Fork a team of threads.
Specify variable scoping

!$OMP PARALLEL PRIVATE(VAR1, VAR2) SHARED(VAR3)
Parallel section executed by all threads

.
Other OpenMP directives

.
Run-time Library calls

.
All threads join master thread and disband

!$OMP END PARALLEL
Resume serial code

.

.

.
END

#include <omp.h>
main () {
int var1, var2, var3;
Serial code

.

.

.
Beginning of parallel section. Fork a team of threads.
Specify variable scoping
#pragma omp parallel private(var1, var2) shared(var3)

{
Parallel section executed by all threads

.
Other OpenMP directives

.
Run-time Library calls

.
All threads join master thread and disband
}

Resume serial code
...

}

OpenMP Compiler Support on Hyades

20

Compiler Version Supports
Intel C/C++, Fortran 14.0 OpenMP 3.1
Intel C/C++, Fortran 15.0 OpenMP 4.0
Intel C/C++, Fortran 16.0 OpenMP 4.0
PGI C/C++, Fortran 13.10 OpenMP 3.1
PGI C/C++, Fortran 14.10 OpenMP 3.1
PGI C/C++, Fortran 15.10 OpenMP 3.1
GNU C/C++, Fortran 4.4 OpenMP 3.0
GNU C/C++, Fortran 4.9 OpenMP 4.0

http://openmp.org/wp/openmp-compilers/

Compiling OpenMP Programs
Platform Compiler Flag
Intel Compilers iccicpcifort

-openmp

PGI Compilers pgccpgCC / pgcpppgfortranpgf77pgf90 / pgf95

-mp

GNU CompilerCollection gccg++gfortran
-fopenmp

21

Compiler Documentation
• Intel Compilers (default and recommended)

• Intel C++ Compiler 16.0 User and Reference Guide: https://software.intel.com/en-us/INTEL-CPLUSPLUS-COMPILER-16.0-USER-AND-REFERENCE-GUIDE
• Intel Fortran Compiler 16.0 User and Reference Guide: https://software.intel.com/en-us/intel-fortran-compiler-16.0-user-and-reference-guide

• PGI Compilers
• PGI documentation: https://www.pgroup.com/resources/docs.htm
• PGI Compiler User’s Guide: https://www.pgroup.com/doc/pgiug.pdf
• PGI Compiler Reference Manual: https://www.pgroup.com/doc/pgiref.pdf

• GCC (GNU Compiler Collection)
• GCC documentation: https://gcc.gnu.org/onlinedocs/
• GNU Fortran Compiler: https://gcc.gnu.org/onlinedocs/gfortran/

22

OpenMP “Hello, world!” in Fortran 77

23

PROGRAM HELLO
implicit none
integer nthreads, tid, OMP_GET_THREAD_NUM,
+ OMP_GET_NUM_THREADS

C$OMP PARALLEL PRIVATE(tid)
tid = OMP_GET_THREAD_NUM()
print *, "Hello, world! I am thread ", tid

C$OMP BARRIER
if (tid .eq. 0) then
nthreads = OMP_GET_NUM_THREADS()
print *, "Number of threads = ", nthreads

end if
C$OMP END PARALLEL

end

• Fortran fixed form
• !$OMP C$OMP *$OMP are accepted sentinels and must start in column 1
Compiler directivesRuntime library routines
PARALLEL region

OpenMP “Hello, world!” in Fortran 90

24

program hello
use omp_lib
implicit none
integer :: nthreads, tid
!$OMP PARALLEL PRIVATE(tid)
tid = OMP_GET_THREAD_NUM()
print *, "Hello, world! I am thread ", tid
!$OMP BARRIER
if (tid .eq. 0) then
nthreads = OMP_GET_NUM_THREADS()
print *, "Number of threads = ", nthreads

end if
!$OMP END PARALLEL

end program hello

• Fortran free form
• !$OMP is the only accepted sentinel and can appear in any column
Compiler directives
Runtime library routines
PARALLEL region

OpenMP “Hello, world!” in C/C++

25

#include <stdio.h>
#include <omp.h>
int main()
{
int nthreads, tid;
#pragma omp parallel private(tid)
{
tid = omp_get_thread_num();
printf("Hello, world! I am thread %d\n", tid);
#pragma omp barrier
if (tid == 0)
{
nthreads = omp_get_num_threads();
printf("Number of threads = %d\n",nthreads);

}
}
return 0;

}

• Case sensitive
• Each directive applies to at most one succeeding statement, which must be a structured block.
Compiler directives
Parallel region
Runtime library routines

Compiling & Running OpenMP Programs on Hyades
Compile OpenMP programs using the default Intel compilers:

ifort -openmp [other options] omp_hello.f -o omp_hello.x
ifort -openmp [other options] omp_hello.f90 -o omp_hello.x
icc -openmp [other options] omp_hello.c -o omp_hello.x
icpc -openmp [other options] omp_hello.cpp -o omp_hello.x

(Test) run OpenMP programs on the master node:
export OMP_NUM_THREADS=8 (sh/bash)
setenv OMP_NUM_THREADS 8 (csh/tcsh)
./omp_hello.x

For production runs, submit your OpenMP jobs to the batch scheduler.
26

Sample Batch Script for OpenMP Jobs

27

#!/bin/bash
#PBS –N omp
#PBS –q normal
#PBS –l nodes=1:ppn=16
#PBS –l walltime=4:00:00
#PBS –M shaw@ucsc.edu
#PBS –m abe
export OMP_NUM_THREADS=16
cd $PBS_O_WORkDIR
./omp_hello.x

your favorite shell
job name
job queue
request 1 node (16 cores)
and 4 hours walltime
ask Torque to send emails
when jobs aborts, starts and ends
set the maximum no. of OpenMP threads to 16
go to the directory where you submit the job
run your OpenMP executable

Batch script omp.pbs: Comments:

To submit the job:
qsub omp.pbs

OpenMP Directives
• PARALLEL Region Construct
• Work-Sharing Constructs

• DO / for Directive
• SECTIONS Directive
• WORKSHARE Directive
• SINGLE DIRECTIVE

• Combined Parallel Work-Sharing Constructs
• TASK Construct
• Synchronization Constructs – MASTER, CRITICAL, BARRIER, TASKWAIT, ATOMIC, FLUSH, ORDERED
• THREADPRIVATE Directive

28

OpenMP Directives – PARALLEL Region Construct
Parallel region: block of code that will be executed by multiple threads

29

Fortran !$OMP PARALLEL [clause ...]
IF (scalar_logical_expression)
PRIVATE (list)
SHARED (list)
DEFAULT (PRIVATE | FIRSTPRIVATE | SHARED | NONE)
FIRSTPRIVATE (list)
REDUCTION (operator: list)
COPYIN (list)
NUM_THREADS (scalar-integer-expression)

block
!$OMP END PARALLEL

C/C++ #pragma omp parallel [clause ...] newline
if (scalar_expression)
private (list)
shared (list)
default (shared | none)
firstprivate (list)
reduction (operator: list)
copyin (list)
num_threads (integer-expression)

structured_block

PARALLEL Region Construct (cont’d)
• When a thread reaches a PARALLEL directive, it creates a team of threads and becomes the master of the team. The master is a member of that team and has thread number 0 within that team.
• Starting from the beginning of this parallel region, the code is duplicated and all threads will execute that code.
• There is an implied barrier at the end of a parallel section. Only the master thread continues execution past this point.
• If any thread terminates within a parallel region, all threads in the team will terminate, and the work done up until that point is undefined.
• A parallel region must be a structured block that does not span multiple routines or code files.
• It is illegal to branch (goto) into or out of a parallel region.

30

PARALLEL Region Construct (cont’d)
• The number of threads in a parallel region is determined by the following factors, in order of precedence:

1. Evaluation of the IF clause - If present, it must evaluate to .TRUE. (Fortran) or non-zero (C/C++) in order for a team of threads to be created
2. Setting of the NUM_THREADS clause
3. Use of the omp_set_num_threads() library function
4. Setting of the OMP_NUM_THREADS environment variable
5. Implementation default - usually the number of CPUs/cores on a node (but for PGI compilers, the default is 1 thread!)

• Threads are numbered from 0 (master thread) to N-1
• Data Scope Attribute Clauses, like private and shared, will be described in details shortly

31

OpenMP “Hello, world!” in C/C++

32

#include <stdio.h>
#include <omp.h>
int main()
{
int nthreads, tid;
#pragma omp parallel private(tid)
{
tid = omp_get_thread_num();
printf("Hello, world! I am thread %d\n", tid);
#pragma omp barrier
if (tid == 0)
{
nthreads = omp_get_num_threads();
printf("Number of threads = %d\n",nthreads);

}
}
return 0;

}

parallel region

OpenMP Directives – Work-Sharing Constructs
• A work-sharing construct divides the execution of the enclosed code region among the members of the team that encounter it.
• Work-sharing constructs do not launch new threads
• There is no implied barrier upon entry to a work-sharing construct, however there is an implied barrier at the end of a work sharing construct.
• Restrictions:

• A work-sharing construct must be enclosed dynamically within a parallel region in order for the directive to execute in parallel.
• Work-sharing constructs must be encountered by all members of a team or none at all
• Successive work-sharing constructs must be encountered in the same order by all members of a team

33

Types of Work-Sharing Constructs
DO / for - shares iterations of a loop across the team. Represents a type of "data parallelism".

SECTIONS - breaks work into separate, discrete sections. Each section is executed by a thread. Can be used to implement a type of "functional parallelism".

SINGLE -serializes a section of code

34
NOTE: The Fortran workshare construct is not shown here, but will be discussed later.

DO / for Directive
The DO / for directive specifies that the iterations of the loop immediately following it must be executed in parallel by the team. This assumes a parallel region has already been initiated, otherwise it executes in serial on a single processor.

35

Fortran !$OMP DO [clause ...]
SCHEDULE (type [,chunk])
ORDERED
PRIVATE (list)
FIRSTPRIVATE (list)
LASTPRIVATE (list)
SHARED (list)
REDUCTION (operator | intrinsic: list)
COLLAPSE (n)

do_loop
!$OMP END DO [NOWAIT]

C/C++ #pragma omp for [clause ...] newline
schedule (type [,chunk])
ordered
private (list)
firstprivate (list)
lastprivate (list)
shared (list)
reduction (operator: list)
collapse (n)
nowait

for_loop

DO / for Directive Clauses
• SCHEDULE: Describes how iterations of the loop are divided among the threads in the team

• STATIC: Loop iterations are divided into pieces of size chunk and then statically assigned to threads.
• DYNAMIC: Loop iterations are divided into pieces of size chunk, and dynamically scheduled among the threads; when a thread finishes one chunk, it is dynamically assigned another. The default chunk size is 1.
• GUIDED: Iterations are dynamically assigned to threads in blocks as threads request them until no blocks remain to be assigned. Similar to DYNAMIC except that the block size decreases each time a parcel of work is given to a thread. The chunk parameter defines the minimum block size. The default chunk size is 1.
• RUNTIME: The scheduling decision is deferred until runtime by the environment variable OMP_SCHEDULE. It is illegal to specify a chunk size for this clause.
• AUTO: The scheduling decision is delegated to the compiler and/or runtime system.

• NOWAIT: If specified, then threads do not synchronize at the end of the parallel loop. 36

DO / for Directive Clauses (cont’d)
• ORDERED: Specifies that the iterations of the loop must be executed as they would be in a serial program.
• COLLAPSE: Specifies how many loops in a nested loop should be collapsed into one large iteration space and divided according to the schedule clause. The sequential execution of the iterations in all associated loops determines the order of the iterations in the collapsed iteration space.

37

DO Directive Example in Fortran

38

PROGRAM VEC_ADD_DO
INTEGER N, CHUNKSIZE, CHUNK, I
PARAMETER (N=1000)
PARAMETER (CHUNKSIZE=100)
REAL A(N), B(N), C(N)

! initializations omitted
CHUNK = CHUNKSIZE

!$OMP PARALLEL SHARED(A,B,C,CHUNK) PRIVATE(I)
!$OMP DO SCHEDULE(DYNAMIC,CHUNK)

DO I = 1, N
C(I) = A(I) + B(I)

ENDDO
!$OMP END DO NOWAIT
!$OMP END PARALLEL

END

PARALLEL region
DO Directive

• Arrays A, B, C, and variable N will be shared by all threads.
• Variable I will be private to each thread; each thread will have its own unique copy.
• The iterations of the loop will be distributed dynamically in CHUNKsized pieces.
• Threads will not synchronize upon completing their individual pieces of work (NOWAIT).

for Directive Example in C/C++

39

#include <omp.h>
#define CHUNKSIZE 100
#define N 1000
int main ()
{
int i, chunk;
float a[N], b[N], c[N];
/* initializations omitted */
chunk = CHUNKSIZE;
#pragma omp parallel shared(a,b,c,chunk) private(i)
{
#pragma omp for schedule(dynamic,chunk) nowait
for (i=0; i < N; i++)
c[i] = a[i] + b[i];

}
return 0;

}

parallel regionfor directive

Which is better?

40

DO i=1,100
DO j = 1,100

!$OMP DO
DO k = 1,100
A(i,j,k)=i*j*k

END DO
!$OMP END DO
END DO

END DO

!$OMP DO
DO i=1,100
DO j = 1,100
DO k = 1,100
A(i,j,k)=i*j*k

END DO
END DO

END DO
!$OMP END DO

A B

Answer: B1. A lot more work per thread2. Less creation/destruction of threads, thus less overhead

Can we do even better?

41

DO i=1,100
DO j = 1,100

!$OMP DO
DO k = 1,100
A(i,j,k)=i*j*k

END DO
!$OMP END DO
END DO

END DO

!$OMP DO
DO i=1,100
DO j = 1,100
DO k = 1,100
A(i,j,k)=i*j*k

END DO
END DO

END DO
!$OMP END DO

!$OMP DO
DO k=1,100
DO j = 1,100
DO i = 1,100
A(i,j,k)=i*j*k

END DO
END DO

END DO
!$OMP END DO

Fortran arrays are stored in column-major formati.e. columns (first dimension) are contiguous in memoryBetter cache performanceDO THIS ALWAYS FOR FORTRAN!

SECTIONS Directive
The SECTIONS directive is a non-iterative work-sharing construct. It specifies that the enclosed section(s) of code are to be divided among the threads in the team. Independent SECTION directives are nested within a SECTIONS directive. Each SECTION is executed once by a thread in the team.

42

Fortran !$OMP SECTIONS [clause ...]
PRIVATE (list)
FIRSTPRIVATE (list)
LASTPRIVATE (list)
REDUCTION (operator | intrinsic: list)

!$OMP SECTION
block

!$OMP SECTION
block

!$OMP END SECTIONS [NOWAIT]
C/C++ #pragma omp sections [clause ...] newline

private (list)
firstprivate (list)
lastprivate (list)
reduction (operator: list)
nowait

{
#pragma omp section newline

structured_block
#pragma omp section newline

structured_block
}

SECTIONS Directive Example in Fortran

43

PROGRAM VEC_SECTIONS
INTEGER N, I
PARAMETER (N=1000)
REAL A(N), B(N), C(N), D(N)

! initializations omitted
!$OMP PARALLEL SHARED(A,B,C,D), PRIVATE(I)
!$OMP SECTIONS
!$OMP SECTION

DO I = 1, N
C(I) = A(I) + B(I)

ENDDO
!$OMP SECTION

DO I = 1, N
D(I) = A(I) * B(I)

ENDDO
!$OMP END SECTIONS NOWAIT
!$OMP END PARALLEL

END

PARALLEL Region
SECTION Directive

SECTION Directive
SECTIONS Directive

sections Directive Example in C/C++

44

#include <omp.h>
#define N 1000
int main () {

int i;
float a[N], b[N], c[N], d[N];
/* initializations omitted */
#pragma omp parallel shared(a,b,c,d) private(i)
{

#pragma omp sections nowait
{
#pragma omp section
for (i=0; i < N; i++)

c[i] = a[i] + b[i];
#pragma omp section
for (i=0; i < N; i++)

d[i] = a[i] * b[i];
}

}
return 0;

}

parallel regionsection directive

section directive
sections directive

WORKSHARE Directive
• Fortran only
• The WORKSHARE directive divides the execution of the enclosed structured block into separate units of work, each of which is executed only once.
• The structured block must consist of only the following:

• array assignments
• scalar assignments
• FORALL statements
• FORALL constructs
• WHERE statements
• WHERE constructs
• atomic constructs
• critical constructs
• parallel constructs

45

Fortran !$OMP WORKSHARE
structured block

!$OMP WORKSHARE [NOWAIT]

WORKSHARE Directive Example in Fortran

46

PROGRAM WORKSHARE
INTEGER N, I, J
PARAMETER (N=100)
REAL AA(N,N), BB(N,N), CC(N,N), DD(N,N)
REAL FIRST, LAST

! initializations omitted
!$OMP PARALLEL SHARED(AA,BB,CC,DD,FIRST,LAST)
!$OMP WORKSHARE

CC = AA * BB
DD = AA + BB
FIRST = CC(1,1) + DD(1,1)
LAST = CC(N,N) + DD(N,N)

!$OMP END WORKSHARE NOWAIT
!$OMP END PARALLEL

END

• Array assignments - the assignment of each element is a unit of work
• Scalar assignments
• Block of code is parallelized sequentially (!), unit by unit (note: incurs overhead)
• Variables which are referenced or modified within construct MUST be shared variables

SINGLE Directive
• The SINGLE directive specifies that the enclosed code is to be executed by only one thread in the team.
• May be useful when dealing with sections of code that are not thread safe (such as I/O).

47

Fortran !$OMP SINGLE [clause ...]
PRIVATE (list)
FIRSTPRIVATE (list)

block
!$OMP END SINGLE [NOWAIT]

C/C++ #pragma omp single [clause ...] newline
private (list)
firstprivate (list)
nowait

structured_block

Combined Parallel Work-Sharing Constructs
• OpenMP provides three directives that are merely conveniences:

• PARALLEL DO / parallel for
• PARALLEL SECTIONS
• PARALLEL WORKSHARE (fortran only)

• For the most part, these directives behave identically to an individual PARALLEL directive being immediately followed by a separate work-sharing directive.
• Most of the rules, clauses and restrictions that apply to both directives are in effect.

48

PARALLEL DO Directive Example in Fortran

49

PROGRAM VEC_ADD_DO
INTEGER N, CHUNKSIZE, CHUNK, I
PARAMETER (N=1000)
PARAMETER (CHUNKSIZE=100)
REAL A(N), B(N), C(N)

! initializations omitted
CHUNK = CHUNKSIZE

!$OMP PARALLEL DO
!$OMP& SHARED(A,B,C,CHUNK) PRIVATE(I)
!$OMP& SCHEDULE(DYNAMIC,CHUNK)

DO I = 1, N
C(I) = A(I) + B(I)

ENDDO
!$OMP END PARALLEL DO

END

PROGRAM VEC_ADD_DO
INTEGER N, CHUNKSIZE, CHUNK, I
PARAMETER (N=1000)
PARAMETER (CHUNKSIZE=100)
REAL A(N), B(N), C(N)

! initializations omitted
CHUNK = CHUNKSIZE

!$OMP PARALLEL SHARED(A,B,C,CHUNK) PRIVATE(I)
!$OMP DO SCHEDULE(DYNAMIC,CHUNK)

DO I = 1, N
C(I) = A(I) + B(I)

ENDDO
!$OMP END DO NOWAIT
!$OMP END PARALLEL

END

vs. DO directive in a PARALLEL region

parallel for Directive Example in C/C++

50

#include <omp.h>
#define CHUNKSIZE 100
#define N 1000
int main ()
{
int i, chunk;
float a[N], b[N], c[N];
/* initializations omitted */
chunk = CHUNKSIZE;
#pragma omp parallel for \
shared(a,b,c,chunk) private(i) \
schedule(dynamic,chunk)
for (i=0; i < N; i++)
c[i] = a[i] + b[i];

return 0;
}

#include <omp.h>
#define CHUNKSIZE 100
#define N 1000
int main ()
{
int i, chunk;
float a[N], b[N], c[N];
/* initializations omitted */
chunk = CHUNKSIZE;
#pragma omp parallel \
shared(a,b,c,chunk) private(i)

{
#pragma omp for schedule(dynamic,chunk) \
nowait

for (i=0; i < N; i++)
c[i] = a[i] + b[i];

}
return 0;

}

vs. for directive in a parallel region

Quick Notes on Directives Format - Fortran
• Fixed Form Fortran

• !$OMP C$OMP *$OMP are accepted sentinels and must start in column 1.
• Initial directive lines must have a space/zero in column 6.
• Continuation lines must have a non-space/zero in column 6.

• Free Form Fortran
• !$OMP is the only accepted sentinel. Can appear in any column, but must be preceded by white space only.
• Initial directive lines must have a space after the sentinel.
• Continuation lines must have an ampersand as the last non-blank character in a line. The following line must begin with a sentinel and then the continuation directives.

51

!$OMP PARALLEL DO SHARED(A,B,C,CHUNK) PRIVATE(I)
!$OMP& SCHEDULE(DYNAMIC,CHUNK)

!$OMP PARALLEL DO SHARED(A,B,C,CHUNK) PRIVATE(I) &
!$OMP SCHEDULE(DYNAMIC,CHUNK)

Quick Notes on Directives Format – C/C++
• Case sensitive
• Directives follow conventions of the C/C++ standards for compiler directives
• Only one directive-name may be specified per directive
• Each directive applies to at most one succeeding statement, which must be a structured block.
• Long directive lines can be "continued" on succeeding lines by escaping the newline character with a backslash ("\") at the end of a directive line.

52

#pragma omp parallel for \
shared(a,b,c,chunk) private(i) \
schedule(dynamic,chunk)

Fortran !$OMP TASK [clause ...]
IF (scalar logical expression)
FINAL (scalar logical expression)
UNTIED
DEFAULT (PRIVATE | FIRSTPRIVATE | SHARED | NONE)
MERGEABLE
PRIVATE (list)
FIRSTPRIVATE (list)
SHARED (list)

block
!$OMP END TASK

C/C++ #pragma omp task [clause ...] newline
if (scalar expression)
final (scalar expression)
untied
default (shared | none)
mergeable
private (list)
firstprivate (list)
shared (list)

structured_block

TASK Construct
• Introduced in OpenMP 3.0
• When a thread encounters a TASK construct, a new task is generated
• The moment of execution of the task is up to the runtime system
• Execution can either be immediate or delayed
• The data environment of the task is determined by the data sharing attribute clauses.
• Completion of a task can be enforced through task synchronization

53

TASK Construct Example in C/C++

54

#include <stdio.h>
int main () {

#pragma omp parallel
{

#pragma omp single
{
printf("A ");
#pragma omp task
{printf("race ");}
#pragma omp task
{printf("car ");}

}
} // End of parallel region
printf("\n");
return 0;

}

$ icc -openmp omp_task.c -o omp_task.x
$ export OMP_NUM_THREADS=2
$./omp_task.x
A race car
$./omp_task.x
A race car
$./omp_task.x
A car race

http://openmp.org/sc13/sc13.tasking.ruud.pdf

TASK Example: Computing Fibonacci Numbers

55

#include <stdio.h>
int fib(int n) {

int i, j;
if (n<2)
return n;

else {
#pragma omp task shared(i) firstprivate(n)
i=fib(n-1);
#pragma omp task shared(j) firstprivate(n)
j=fib(n-2);
#pragma omp taskwait
return i+j;

}
}
int main()
{

int n = 10;
#pragma omp parallel shared(n)
{
#pragma omp single
printf ("fib(%d) = %d\n", n, fib(n));

}
return 0;

}

Explicitly wait on the completion of child tasks

Although only one thread executes the single directive, all team threads will participate in executing the tasks generated.

Synchronization Constructs
• Consider a simple example where two threads on two different processors are both trying to increment a variable x at the same time (assume x is initially 0)
• One possible execution sequence:

1. Thread 1 loads the value of x into register A
2. Thread 2 loads the value of x into register A
3. Thread 1 adds 1 to register A
4. Thread 2 adds 1 to register A
5. Thread 1 stores register A at location x
6. Thread 2 stores register A at location x

The resultant value of x will be 1, not 2 as it should be!
• To avoid a situation like this, the incrementing of x must be synchronized between the two threads to ensure that the correct result is produced.

56

THREAD 1:
increment(x)
{

x = x + 1;
} THREAD 1:
10 LOAD A, (x address)
20 ADD A, 1
30 STORE A, (x address)

THREAD 2:
increment(x)
{

x = x + 1;
}THREAD 2:
10 LOAD A, (x address)
20 ADD A, 1
30 STORE A, (x address)

OpenMP Synchronization Constructs
• Master Directive
• CRITICAL Directive
• BARRIER Directive
• TASKWAIT Directive
• ATOMIC Directive
• FLUSH Directive
• ORDERED Directive

57

MASTER Directive
• The MASTER directive specifies a region that is to be executed only by the master thread of the team. All other threads on the team skip this section of code
• There is no implied barrier associated with this directive

58

Fortran !$OMP MASTER
block

!$OMP END MASTER
C/C++ #pragma omp master newline

structured_block

CRITICAL Directive
• The CRITICAL directive specifies a region of code that must be executed by only one thread at a time.
• If a thread is currently executing inside a CRITICAL region and another thread reaches that CRITICAL region and attempts to execute it, it will block until the first thread exits that CRITICAL region.
• The optional name enables multiple different CRITICAL regions to exist:

• Names act as global identifiers. Different CRITICAL regions with the same name are treated as the same region.
• All CRITICAL sections which are unnamed, are treated as the same section.

59

Fortran !$OMP CRITICAL [name]
block

!$OMP END CRITICAL [name]
C/C++ #pragma omp critical [name] newline

structured_block

CRITICAL Directive Example

60

PROGRAM CRITICAL
INTEGER X
X = 0

!$OMP PARALLEL SHARED(X)
!$OMP CRITICAL

X = X + 1
!$OMP END CRITICAL
!$OMP END PARALLEL

END

#include <omp.h>
int main()
{
int x;
x = 0;
#pragma omp parallel shared(x)
{
#pragma omp critical
x = x + 1;

} /* end of parallel section */
return 0;

}

Fortran: C/C++:

BARRIER Directive
• The BARRIER directive synchronizes all threads in the team.
• When a BARRIER directive is reached, a thread will wait at that point until all other threads have reached that barrier. All threads then resume executing in parallel the code that follows the barrier.

61

Fortran !$OMP BARRIER
C/C++ #pragma omp barrier newline

TASKWAIT Directive
• New with OpenMP 3.1
• The TASKWAIT construct specifies a wait on the completion of child tasks generated since the beginning of the current task.

62

Fortran !$OMP TASKWAIT
C/C++ #pragma omp taskwait newline

ATOMIC Directive
• The ATOMIC directive specifies that a specific memory location must be updated atomically, rather than letting multiple threads attempt to write to it. In essence, this directive provides a mini-CRITICAL section.

63

Fortran !$OMP ATOMIC
statement_expression

C/C++ #pragma omp atomic newline
statement_expression

FLUSH Directive
• The FLUSH directive identifies a synchronization point at which the implementation must provide a consistent view of memory. Thread-visible variables are written back to memory at this point.

• The FLUSH directive is implied for the directives shown in the table below (FLUSH often). The directive is not implied if a NOWAIT clause is present.

64

Fortran !$OMP FLUSH (list)
C/C++ #pragma omp taskwait newline

Fortran C/C++
BARRIER
END PARALLEL
CRITICAL and END CRITICAL
END DO
END SECTIONS
END SINGLE
ORDERED and END ORDERED

barrier
parallel - upon entry and exit
critical - upon entry and exit
ordered - upon entry and exit
for - upon exit
sections - upon exit
single - upon exit

ORDERED Directive
• The ORDERED directive specifies that iterations of the enclosed loop will be executed in the same order as if they were executed on a serial processor.
• Threads will need to wait before executing their chunk of iterations if previous iterations haven't completed yet
• Only one thread is allowed in an ordered section at any time
• Used within a DO / for loop with an ORDERED clause

65

Fortran !$OMP DO ORDERED [clauses...]
(loop region)

!$OMP ORDERED
(block)

!$OMP END ORDERED
(end of loop region)

!$OMP END DO
C/C++ #pragma omp for ordered [clauses...]

(loop region)
#pragma omp ordered newline

structured_block
(end of loop region)

THREADPRIVATE Directive
• The THREADPRIVATE directive is used to make global file scope variables (C/C++) or common blocks (Fortran) local and persistent to a thread through the execution of multiple parallel regions.
• The directive must appear after the declaration of listed variables/common blocks. Each thread then gets its own copy of the variable/common block, so data written by one thread is not visible to other threads.
• On first entry to a parallel region, data in THREADPRIVATE variables and common blocks should be assumed undefined, unless a COPYIN clause is specified in the PARALLEL directive

66

Fortran !$OMP THREADPRIVATE (/cb/, ...)
C/C++ #pragma omp threadprivate (list) newline

Note: cb is the name of a common block

67

PROGRAM THREADPRIV
INTEGER A, B, I, TID, OMP_GET_THREAD_NUM
REAL*4 X
COMMON /C1/ A
SAVE X

!$OMP THREADPRIVATE(/C1/, X)
C Explicitly turn off dynamic threads

CALL OMP_SET_DYNAMIC(.FALSE.)
PRINT *, '1st Parallel Region:'

!$OMP PARALLEL PRIVATE(B, TID)
TID = OMP_GET_THREAD_NUM()
A = TID
B = TID
X = 1.1 * TID + 1.0
PRINT *, 'Thread',TID,': A,B,X=',A,B,X

!$OMP END PARALLEL
PRINT *, '************************************'
PRINT *, 'Master thread doing serial work here'
PRINT *, '************************************'
PRINT *, '2nd Parallel Region: '

!$OMP PARALLEL PRIVATE(TID)
TID = OMP_GET_THREAD_NUM()
PRINT *, 'Thread',TID,': A,B,X=',A,B,X

!$OMP END PARALLEL
END

THREADPRIVATE Directive Example in Fortran
X must have the SAVE attribute

THREADPRIVATE variables (X & A) persist between different parallel sections

B doesn’t persist between different parallel sections

B is undefined in the 2nd parallel region

Try it out

68

$ ifort -openmp threadpriv.f -o threadpriv.x
$ export OMP_NUM_THREADS=4
$./threadpriv.x
1st Parallel Region:
Thread 0 : A,B,X= 0 0 1.000000
Thread 3 : A,B,X= 3 3 4.300000
Thread 2 : A,B,X= 2 2 3.200000
Thread 1 : A,B,X= 1 1 2.100000

Master thread doing serial work here

2nd Parallel Region:
Thread 3 : A,B,X= 3 40896 4.300000
Thread 0 : A,B,X= 0 40896 1.000000
Thread 1 : A,B,X= 1 40896 2.100000
Thread 2 : A,B,X= 2 40896 3.200000

69

#include <omp.h>
int a, b, i, tid; float x;
#pragma omp threadprivate(a, x)
int main () {
/* Explicitly turn off dynamic threads */
omp_set_dynamic(0);
printf("1st Parallel Region:\n");
#pragma omp parallel private(b,tid)
{
tid = omp_get_thread_num();
a = tid;
b = tid;
x = 1.1 * tid +1.0;
printf("Thread %d: a,b,x= %d %d %f\n",tid,a,b,x);

} /* end of parallel section */
printf("************************************\n");
printf("Master thread doing serial work here\n");
printf("************************************\n");
printf("2nd Parallel Region:\n");
#pragma omp parallel private(tid)
{
tid = omp_get_thread_num();
printf("Thread %d: a,b,x= %d %d %f\n",tid,a,b,x);

} /* end of parallel section */
return 0;

}

THREADPRIVATE Directive Example in C/C++

THREADPRIVATE variables (a & x) persist between different parallel sections

b doesn’t persist between different parallel sections

b is undefined in the 2nd parallel region

Try it out

70

$ ifort -openmp threadpriv.f -o threadpriv.x
$ export OMP_NUM_THREADS=4
$./threadpriv.x
1st Parallel Region:
Thread 0: a,b,x= 0 0 1.000000
Thread 1: a,b,x= 1 1 2.100000
Thread 2: a,b,x= 2 2 3.200000
Thread 3: a,b,x= 3 3 4.300000

Master thread doing serial work here

2nd Parallel Region:
Thread 1: a,b,x= 1 0 2.100000
Thread 3: a,b,x= 3 0 4.300000
Thread 0: a,b,x= 0 0 1.000000
Thread 2: a,b,x= 2 0 3.200000

Directive Scoping
• Static (Lexical) Extent:

• The code textually enclosed between the beginning and the end of a structured block following a directive.
• The static extent of a directives does not span multiple routines or code files

• Orphaned Directive:
• An OpenMP directive that appears independently from another enclosing directive is an orphaned directive. It exists outside of another directive's static (lexical) extent.
• Will span routines and possibly code files

• Dynamic:
• The dynamic extent of a directive includes both its static (lexical) extent and the extents of its orphaned directives.

• OpenMP specifies a number of scoping rules on how directives may associate (bind) and nest within each other
71

Directive Scoping Example
PROGRAM TEST
...

!$OMP PARALLEL
...

!$OMP DO
DO I=...
...
CALL SUB1
...
ENDDO
...
CALL SUB2
...

!$OMP END PARALLEL

SUBROUTINE SUB1
...

!$OMP CRITICAL
...

!$OMP END CRITICAL
END
SUBROUTINE SUB2
...

!$OMP SECTIONS
...

!$OMP END SECTIONS
...
END

STATIC EXTENT The DO directive occurs within an enclosing parallel region
ORPHANED DIRECTIVES The CRITICAL and SECTIONS directives occur outside an enclosing parallel region

DYNAMIC EXTENT The CRITICAL and SECTIONS directives occur within the dynamic extent of the DO and PARALLEL directives.
72

Data Scope Attribute Clauses
• PRIVATE Clause
• SHARED Clause
• DEFAULT Clause
• FIRSTPRIVATE Clause
• LASTPRIVATE Clause
• COPYIN Clause
• COPYPRIVATE Clause
• REDUCTION Clause

73

PRIVATE Clause
• The PRIVATE clause declares variables in its list to be private to each thread.
• PRIVATE variables behave as follows:

• A new object of the same type is declared once for each thread in the team
• All references to the original object are replaced with references to the new object
• Variables declared PRIVATE should be assumed to be uninitialized for each thread

• Format:

74

Fortran PRIVATE (list)
C/C++ private (list)

PRIVATE vs. THREADPRIVATE

75

PRIVATE THREADPRIVATE
Data Item C/C++: variableFortran: variable or common block C/C++: variableFortran: common block
Where Declared At start of region or work-sharing group In declarations of each routine using block or global file scope
Persistent? No Yes
Extent Lexical only - unless passed as an argument to subroutine Dynamic
Initialized Use FIRSTPRIVATE Use COPYIN

SHARED Clause
• The SHARED clause declares variables in its list to be shared among all threads in the team.
• A shared variable exists in only one memory location and all threads can read or write to that address
• It is the programmer's responsibility to ensure that multiple threads properly access SHARED variables (such as via CRITICAL sections)
• Format:

76

Fortran SHARED (list)
C/C++ shared (list)

DEFAULT Clause
• The DEFAULT clause allows the user to specify a default scope for all variables in the lexical extent of any parallel region.
• Specific variables can be exempted from the default using the PRIVATE, SHARED, FIRSTPRIVATE, LASTPRIVATE, and REDUCTION clauses
• The C/C++ OpenMP specification does not include private or firstprivate as a possible default. However, actual implementations may provide this option.
• Using NONE as a default requires that the programmer explicitly scope all variables.
• Format:

77

Fortran DEFAULT (PRIVATE | FIRSTPRIVATE | SHARED | NONE)
C/C++ default (shared | none)

FIRSTPRIVATE Clause
• The FIRSTPRIVATE clause combines the behavior of the PRIVATEclause with automatic initialization of the variables in its list.
• Listed variables are initialized according to the value of their original objects prior to entry into the parallel or work-sharing construct.
• Format:

78

Fortran FIRSTPRIVATE (list)
C/C++ firstprivate (list)

LASTPRIVATE Clause
• The LASTPRIVATE clause combines the behavior of the PRIVATEclause with a copy from the last loop iteration or section to the original variable object.
• The value copied back into the original variable object is obtained from the last (sequentially) iteration or section of the enclosing construct.
• Format:

79

Fortran LASTPRIVATE (list)
C/C++ lastprivate (list)

COPYIN Clause
• The COPYIN clause provides a means for assigning the same value to THREADPRIVATE variables for all threads in the team.
• List contains the names of variables to copy. In Fortran, the list can contain both the names of common blocks and named variables.
• The master thread variable is used as the copy source. The team threads are initialized with its value upon entry into the parallel construct.
• Format:

80

Fortran COPYIN (list)
C/C++ copyin (list)

COPYPRIVATE Clause
• The COPYPRIVATE clause can be used to broadcast values acquired by a single thread directly to all instances of the private variables in the other threads.
• Associated with the SINGLE directive
• Format:

81

Fortran COPYPRIVATE (list)
C/C++ copyprivate (list)

REDUCTION Clause
• The REDUCTION clause performs a reduction on the variables that appear in its list.
• A private copy for each list variable is created for each thread. At the end of the reduction, the reduction variable is applied to all private copies of the shared variable, and the final result is written to the global shared variable.
• Format:

82

Fortran REDUCTION (operator|intrinsic: list)
C/C++ reduction (operator: list)

REDUCTION Clause Example in Fortran

83

PROGRAM DOT_PRODUCT
INTEGER N, CHUNKSIZE, CHUNK, I
PARAMETER (N=100)
PARAMETER (CHUNKSIZE=10)
REAL A(N), B(N), RESULT

! initializations omitted
RESULT= 0.0
CHUNK = CHUNKSIZE

!$OMP PARALLEL DO
!$OMP& DEFAULT(SHARED) PRIVATE(I)
!$OMP& SCHEDULE(STATIC,CHUNK)
!$OMP& REDUCTION(+:RESULT)

DO I = 1, N
RESULT = RESULT + (A(I) * B(I))

ENDDO
!$OMP END PARALLEL DO

PRINT *, 'Final Result= ', RESULT
END

• Iterations of the parallel loop will be distributed in equal sized blocks to each thread in the team (SCHEDULE STATIC)
• At the end of the parallel loop construct, all threads will add their values of "result" to update the master thread's global copy.

REDUCTION Clause Example in C/C++

84

#include <omp.h>
int main () {
int i, n, chunk;
float a[100], b[100], result;
/* initializations omitted*/
n = 100;
chunk = 10;
result = 0.0;
#pragma omp parallel for \
default(shared) private(i) \
schedule(static,chunk) \
reduction(+:result)

for (i=0; i < n; i++)
result = result + (a[i] * b[i]);

printf("Final result= %f\n",result);
return 0;

}

• Iterations of the parallel loop will be distributed in equal sized blocks to each thread in the team (SCHEDULE STATIC)
• At the end of the parallel loop construct, all threads will add their values of "result" to update the master thread's global copy.

Clauses / Directives Summary
The table below summarizes which clauses are accepted by which OpenMP directives:

85

Clauses / Directives Summary (cont’d)
• The following OpenMP directives do not accept clauses:

oMASTER
oCRITICAL
oBARRIER
oATOMIC
o FLUSH
oORDERED
oTHREADPRIVATE

• Implementations may (and do) differ from the standard in which clauses are supported by each directive.

86

Directive Binding Rules
• The DO/for, SECTIONS, SINGLE, MASTER and BARRIER directives bind to the dynamically enclosing PARALLEL, if one exists. If no parallel region is currently being executed, the directives have no effect.
• The ORDERED directive binds to the dynamically enclosing DO/for.
• The ATOMIC directive enforces exclusive access with respect to ATOMIC directives in all threads, not just the current team.
• The CRITICAL directive enforces exclusive access with respect to CRITICAL directives in all threads, not just the current team.
• A directive can never bind to any directive outside the closest enclosing PARALLEL.

87

Directive Nesting Rules
• A worksharing region may not be closely nested inside a worksharing, explicit task, critical, ordered, atomic, or master region.
• A barrier region may not be closely nested inside a worksharing, explicit task, critical, ordered, atomic, or master region.
• A master region may not be closely nested inside a worksharing, atomic, or explicit task region.
• An ordered region may not be closely nested inside a critical, atomic, or explicit task region.
• An ordered region must be closely nested inside a loop region (or parallel loop region) with an ordered clause.
• A critical region may not be nested (closely or otherwise) inside a critical region with the same name. Note that this restriction is not sufficient to prevent deadlock.
• parallel, flush, critical, atomic, taskyield, and explicit task regions may not be closely nested inside an atomic region.

88
The term "closely nested region" means a region that is dynamically nested inside another region with no parallel region nested between them.

Runtime Library Routines
• The OpenMP API includes an ever-growing number of run-time library routines.
• For C/C++, all of the run-time library routines are actual subroutines. For Fortran, some are actually functions, and some are subroutines.
• For C/C++, you usually need to include the <omp.h> header file.
• Fortran routines are not case sensitive, but C/C++ routines are.
• For the Lock routines/functions:

• The lock variable must be accessed only through the locking routines
• For Fortran, the lock variable should be of type integer and of a kind large enough to hold an address.
• For C/C++, the lock variable must have type omp_lock_t or type
omp_nest_lock_t, depending on the function being used.

89

90

Environment Variables
OMP_SCHEDULE

Applies only to DO, PARALLEL DO (Fortran) and for, parallel for (C/C++) directives which have their schedule clause set to RUNTIME. The value of this variable determines how iterations of the loop are scheduled on processors. For example (bash):
export OMP_SCHEDULE="guided, 4"
export OMP_SCHEDULE="dynamic"

OMP_NUM_THREADS
Sets the maximum number of threads to use during execution. For example (bash):
export OMP_NUM_THREADS=8

OMP_DYNAMIC
Enables or disables dynamic adjustment of the number of threads available for execution of parallel regions. Valid values are TRUE or FALSE. For example (bash):
export OMP_DYNAMIC=TRUE

91

Environment Variables (cont’d)

92

OMP_PROC_BINDEnables or disables threads binding to processors. Valid values are TRUE or FALSE. For example (bash):
export OMP_PROC_BIND=TRUEOMP_NESTEDEnables or disables nested parallelism. Valid values are TRUE or FALSE. For example (bash):
export OMP_NESTED=TRUEOMP_STACKSIZE / KMP_STACKSIZEControls the size (bytes) of the stack for created (non-Master) threads. Examples (bash):
export OMP_STACKSIZE=10M
export KMP_STACKSIZE=10M

KMP_ : extensions

Environment Variables (cont’d)
OMP_WAIT_POLICYProvides a hint to an OpenMP implementation about the desired behavior of waiting threads. Valid values are ACTIVE and PASSIVE. ACTIVE specifies that waiting threads should mostly be active, i.e., consume processor cycles, while waiting. PASSIVE specifies that waiting threads should mostly be passive, i.e., not consume processor cycles, while waiting. Examples (bash):

export OMP_WAIT_POLICY=ACTIVE
export OMP_WAIT_POLICY=PASSIVE OMP_MAX_ACTIVE_LEVELSControls the maximum number of nested active parallel regions. The value of this environment variable must be a non-negative integer. Example (bash):
export OMP_MAX_ACTIVE_LEVELS=2OMP_THREAD_LIMITSets the number of OpenMP threads to use for the whole OpenMP program. The value of this environment variable must be a positive integer. Example (bash):
export OMP_THREAD_LIMIT=8

93

Thread Stack Size
• The OpenMP standard does not specify how much stack space a thread should have.
• Implementations differ in the default thread stack size. Default thread stack size can be easy to exhaust.

• Threads that exceed their stack allocation may or may not seg fault. An application may continue to run while data is being corrupted.
• You can use the OMP_STACKSIZE (KMP_STACKSIZE) environment variable to set the OpenMP thread stack size (the Linux stack size is unlimited on Hyades):

export KMP_STACKSIZE=12M (sh/bash)
setenv KMP_STACKSIZE=12M (csh/tcsh)

94

Compiler Approx. Stack Limit Approx. Array Size (doubles)
Intel 4 MB 700 x 700
PGI 8 MB 1000 x 1000
GCC 2 MB 500 x 500

Thread Binding
• In some cases, a program will perform better if its threads are bound to processors/cores.
• Binding a thread to a processor means that a thread will be scheduled by the operating system to always run on a the same processor. Otherwise, threads can be scheduled to execute on any processor and "bounce" back and forth between processors with each time slice.
• Also called "thread affinity" or "processor affinity"
• Binding threads to processors can result in better cache utilization, thereby reducing costly memory accesses. This is the primary motivation for binding threads to processors.
• The OpenMP version 3.1 API provides an environment variable to turn processor binding "on" or "off". For example (bash):

export OMP_PROC_BIND=TRUE
export OMP_PROC_BIND=FALSE

• At a higher level, processes can also be bound to processors.
95

Further Readings
1. OpenMP version 3.1 Complete Specifications: http://www.openmp.org/mp-documents/OpenMP3.1.pdf
2. OpenMP version 3.1 Summary Card C/C++: http://openmp.org/mp-documents/OpenMP3.1-CCard.pdf
3. OpenMP version 3.1 Summary Card Fortran: http://openmp.org/mp-documents/OpenMP3.1-FortranCard.pdf
4. Using OpenMP: Portable Shared Memory Parallel Programming, byB. Chapman, G. Jost, & R. van der Pas, MIT press, 2007: http://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=6267237
5. Wikipedia: https://en.wikipedia.org/wiki/OpenMP

96

