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Outline
• Performance and Scalability
• Analytical performance measures
• Amdahl’s law and Gustafson’s law
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What is Performance?
• In computing, performance is defined by 2 factors

• Computational requirements
• Computing resources

• Computational problems translate to requirements
• Computing resources:
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Time Energy
… and ultimately

MoneyHardware
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Why do we care about Performance?
• Performance itself is a measure of how well the computational requirements can be satisfied
• We evaluate performance to understand the relationships between requirements and resources

• Decide how to change “solutions” to target objectives
• Performance measures reflect decisions about how and how well “solutions” are able to satisfy the computational requirements

“The most constant difficulty in contriving the engine hasarisen from the desire to reduce the time in which thecalculations were executed to the shortest which is possible.”Charles Babbage, 1791 – 1871
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What is Parallel Performance?
• Here we are concerned with performance issues when using a parallel computing environment

• Performance with respect to parallel computation
• Performance is the raison d’être for parallelism

• Parallel performance versus sequential performance
• If the “performance” is not better, parallelism is not necessary

• Parallel processing includes techniques and technologies necessary to compute in parallel
• Hardware, networks, operating systems, parallel libraries, languages, compilers, algorithms, tools, …

• Parallelism must deliver performance
• How?  How well?
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Performance Expectation (Loss)
• If each processor is rated at k MFLOPS and there are p processors, should we see k*p MFLOPS performance?
• If it takes 100 seconds on 1 processor, shouldn’t it take 10 seconds on 10 processors?
• Several causes affect performance

• Each must be understood separately
• But they interact with each other in complex ways

• Solution to one problem may create another
• One problem may mask another

• Scaling (system & problem size) can change conditions
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Embarrassingly Parallel Computations
• An embarrassingly parallel computation is one that can be obviously divided into completely independent parts that can be executed simultaneously

• In a truly embarrassingly parallel computation there is no interaction between separate processes
• In a nearly embarrassingly parallel computation results must be distributed and collected/combined in some way

• Embarrassingly parallel computations have potential to achieve maximal speedup on parallel platforms
• If it takes T time sequentially, there is the potential to achieve T/P time running in parallel with P processors
• What would cause this not to be the case always?
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Performance and Scalability
• Evaluation

• Sequential runtime (Tseq) is a function of
• problem size and architecture

• Parallel runtime (Tpar) is a function of
• problem size and parallel architecture
• # of processors used in the execution

• Parallel performance affected by
• algorithm + architecture

• Scalability
• Ability of parallel algorithm to achieve performance gains proportional to the number of processors and the size of the problem
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Performance Metrics and Formulas
• T1 is the execution time on a single processor
• Tp is the execution time on a p processor system
• Sp is the speedup

௣ భ்
೛்• Ep is the efficiency
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௣• Cp is the cost
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• Parallel algorithm is cost-optimal, if parallel time = sequential time

Cp = T1 & Ep = 100%
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Amdahl’s Law
• Fixed problem size
• Let f be the fraction of a program that is sequential, then 1-f is the fraction that can be parallelized

T1 = f T1 + (1-f) T1Tp = f T1 + (1-f) T1/p
Sp = T1 / Tp= T1 / (fT1 +(1-f)T1 /p))

= 1 / (f +(1-f)/p))
• As p Sp = 1 / f
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Amdahl’s Law and Scalability
• Scalability

• Ability of parallel algorithm to achieve performance gains proportional to the number of processors and the size of the problem
• When does Amdahl’s Law apply?

• When the problem size is fixed
• Strong scaling
• Speedup bound is determined by the degree of sequential execution time in the computation, not # of processors!

p ∞, Sp = S∞  1 / f
• Uhh, this is not good … Why?
• Perfect efficiency is hard to achieve
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Gustafson-Barsis’s Law
• We often increase the size of problems to fully exploit the available computing power
• Let f be the fraction of a program that is sequential, then fpar=1-f is the fraction that can be parallelized. The workload on one processor is:W1 = f W1 + (1-f) W1• Assuming parallel time is kept constant, the total workload on p processors is: Wp = f W1 + (1-f) W1*p
• Scaled speedup:Sp = Wp / W1= f + (1-f)*p= 1-fpar + fpar*p = 1 + (p-1) fpar• Efficiency: Ep = Sp / p = (1-fpar)/p + fpar
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Gustafson-Barsis’s Law and Scalability
• Scalability

• Ability of parallel algorithm to achieve performance gains proportional to the number of processors and the size of the problem
• When does Gustafson-Barsis’s Law apply?

• When the problem size can increase as the number of processors increases
• Weak scaling
• Speedup function includes the number of processors!

Sp = 1 + (p-1)fpar• Can maintain or increase parallel efficiency as the problem scales
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Amdahl versus Gustafson-Barsis
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DAG Model of Computation
• Think of a program as a directed acyclic graph (DAG) of tasks

• A task can not execute until all theinputs to the tasks are available
• These come from outputs of earlierexecuting tasks
• DAG shows explicitly the task dependencies

• Think of the hardware as consistingof workers (processors)
• Consider a greedy scheduler ofthe DAG tasks to workers

• No worker is idle while thereare tasks still to execute
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Work-Span Model
• TP = time to run with P workers
• T1 = work

• Time for serial execution
• execution of all tasks by 1 worker

• Sum of all work
• T∞ = span

• Time along the critical path
• Critical path

• Sequence of task execution (path) through DAG that takes the longest time to execute
• Assumes an infinite # workers available
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Work-Span Example
• Let each task take 1 unit of time
• DAG at the right has 7 tasks
• T1 = 7

• All tasks have to be executed
• Tasks are executed in a serial order
• Can they execute in any order?

• T∞ = 5
• Time along the critical path
• In this case, it is the longest path length ofany task order that maintains necessary dependencies
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Lower/Upper Bound on Greedy Scheduling
• Suppose we only have P workers
• We can write a work-span formulato derive a lower bound on TpMax(T1 / p , T∞  ) ≤  TP
• T∞  is the best possible execution time
• Brent’s Lemma derives an upper bound

• Capture the additional cost executingthe other tasks not on the critical path
• Assume we can do so without overhead

Tp ≤ (T1 - T∞  ) / p + T∞
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Consider Brent’s Lemma for 2 Processors
• T1 = 7
• T∞ = 5
• T2 ≤ (T1 - T∞  ) / P + T∞≤ (7 – 5) / 2 + 5

≤ 6
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Amdahl was an optimist!
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Estimating Running Time
• Scalability requires that T∞ be dominated by T1

Max(T1 / p , T∞  ) ≤  Tp ≤ (T1 - T∞  ) / p + T∞=> Tp ≈ T1 / p + T∞ if T∞  << T1

• Increasing work (T1) hurts parallel execution proportionately
• The span (T∞ ) impacts scalability, even for finite p
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Parallel Slack
• Sufficient parallelism implies linear speedup

• Is it possible to have superlinear speedup (Sp > p)?
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