
AMS 250: An Introduction toHigh Performance Computing
Manycore Computing

Shawfeng Dong
shaw@ucsc.edu
(831) 459-2725

Astronomy & Astrophysics
University of California, Santa Cruz

Outline
• Why GPU / Accelerator-based / Manycore Computing?
• GPU Architecture
• Introduction to CUDA C Programming
• GPU-Accelerated Libraries
• OpenACC
• Intel MIC / Xeon Phi

2

Why Manycore Computing?
“I think they're right on the money, but the huge performance differential (currently 3 GPUs ~= 300 SGI Altix Itanium2s) will invite close scrutiny so I have to be careful what I say publically until I triple check those numbers.”

-John Stone, UIUC, circa 2007

Is a top-of-the-line GPU 100 times faster than a top-of-the-line CPU?

3

Why Manycore Computing?
FLOPS Memory Bandwidth

4

Multicore CPU vs. Manycore GPU

• Optimized for low latency access to cached data sets
• Control logic for out-of-order and speculative execution

• Optimized for data-parallel, high throughput computing
• Architecture tolerant of memory latency
• More Transistors dedicated to computation

CPU GPU

5

Multicore versus Manycore – Real Chips
Intel Xeon E5-2650 Nvidia Tesla K20

Architecture Sandy Bridge Kepler
Processing Units 8 cores (with 256-bit AVX) 13 SM / 2496 cores/ 832 DP units
Clock Speed 2.0 GHz 706 MHz
Single Precision 256 GLOPS 3.52 TFLOPS
Double Precision 128 GFLOPS 1.17 TFLOPS
Memory Bandwidth 51.2 GB/s 208 GB/s
Memory Size 32 GB 5 GB
Registers ~100 per core 65536 x 32-bit per SM
L1 Cache 64 KB per core 64 KB per SM
L2 Cache 256 KB per core 768 KB shared
L3 Cache 20 MB shared N/A
Process 32nm 28nm
Transistor Count 2.3B 7.1B
Thermal Design Power 95W 225W

Intel Sandy Bridge (32nm)

Nvidia GK110 (28nm)

~9x
~4x

Shared
address

space Distributed
address
space

Connecting Manycore GPUs to Multicore CPUs
Typically, GPU devices are accessed over PCIe

‒ Bandwidth of PCIe 2.0 x16 = 8 GB/s (18GB/s duplex)

7

Nvidia Tesla K20 GPU
• Kepler microarchitecture
• 2496 CUDA cores / 832 DP units / 13 SMs
• Core speed: 706 MHz
• Double precision performance: 1.17 TFLOPS= 0.706 (GHz) x 832 (DP units) x 2 (FMA) ~ 9x CPU
• Single precision performance: 3.52 TFLOPS= 0.706 (GHz) x 2496 (CUDA cores) x 2 (FMA)
• Memory: 5.2GHz, 320-bit wide, 5GB GDDR55.2 (GHz) x 320 / 8 = 208 GB/s ~ 4x CPU
• PCI express 2.0 x16500 (MB/s) x 8/10 x 16 = 8 GB/s (16 GB/s duplex)

8http://www.anandtech.com/show/6446/nvidia-launches-tesla-k20-k20x-gk110-arrives-at-last

Streaming Multiprocessors (SM)
• GPU

• A number of SMs (Steaming Multiprocessors)
• Memory

• Each SM has its own
• Control unit
• Pipeline for execution192 cores, 64 DP units per SM on K20
• Registers
• Shared memory/L1 cache
• Read-only data cache
• Texture unit

• SM is the unit of transparent scalability 9

Transparent Scalability
• Threads are assigned to SMs in block granularity

• Coarse-grained data parallelism
• Task parallelism

• Threads of a thread block execute concurrently on one SM
• Multiple thread blocks can execute concurrently on the same SM

• Up to 2048 threads per SM
• Up to 16 blocks per SM (Kepler GK110)

• Each block can execute in any order relative to other blocks
10

https://www.microway.com/knowledge-center-articles/in-depth-comparison-of-nvidia-tesla-kepler-gpu-accelerators/

Single Instruction Multiple Threads
• SIMT (Single Instruction Multiple Threads) is the execution model on GPUs
• SIMT is a special case of SIMD (Single Instruction Multiple Data)
• Fine-grained data parallelism and thread parallelism within a thread block
• GPU threads are lightweight and fast switching
• GPU needs 1000s of threads for full efficiency

• Max threads per SM = 2048 (on Kepler GK110)
• Could be 8 blocks if 256 threads per block (typical)
• Could be 16 blocks if 128 threads per block

• Each block is executed as 32-thread warps (32-way SIMD)
• An implementation decision, not part of CUDA programming model
• Warps are scheduling units in SM
• If threads of a warp diverge via conditional branch, the warp seriallyexecutes each branch path taken

11

CUDA Programming Model
• CUDA = Compute Unified Device Architecture
• General purpose programming model for GPU

• GPU as a dedicated super-threaded, massively data parallel co-processor
• Optimized for computation (graphics-free API)
• Data sharing with OpenGL buffer objects
• Explicit GPU memory management

• CUDA C consists of a minimal set of extension to the C language and a runtime library
• Declspecs
• Built-in types
• Built-in variables
• Runtime functions
• Kernel launches

12

Heterogeneous Programming
Integrated host+device C/C++ program
• Serial or modestly parallel parts in host C code
• Highly parallel parts in device kernel code

13

#define N 20480
// declare the kernel
__global__ void daxpy(double a, double *x, double *y)
{

int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < N) { y[i] += a*x[i]; }

}
int main(void) {

double *x, *y, a, *dx, *dy;
size_t size = N*sizeof(double);
// initialize x and y on host (skipped)
// allocate device memory for x and y
cudaMalloc((void **) &dx, size);
cudaMalloc((void **) &dy, size);
// copy host memory to device memory
cudaMemcpy(dx, x, size, cudaMemcpyHostToDevice);
cudaMemcpy(dy, y, size, cudaMemcpyHostToDevice);
// launch the kernel function
daxpy<<<N/256,256>>>(a, dx, dy);
// copy device memory to host memory
cudaMemcpy(y, dy, size, cudaMemcpyDeviceToHost);
// deallocate device memory
cudaFree(dx); cudaFree(dy);

}

A Sample CUDA programimplementingBLAS level-1 function DAXPY
A * X + YwhereX & Y are vectorsA is a scalar

https://pleiades.ucsc.edu/hyades/GPU_QuickStart_Guide

#define N 20480
// declare the kernel
__global__ void daxpy(double a, double *x, double *y)
{

int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < N) { y[i] += a*x[i]; }

}
int main(void) {

double *x, *y, a, *dx, *dy;
size_t size = N*sizeof(double);
// initialize x and y on host (skipped)
// allocate device memory for x and y
cudaMalloc((void **) &dx, size);
cudaMalloc((void **) &dy, size);
// copy host memory to device memory
cudaMemcpy(dx, x, size, cudaMemcpyHostToDevice);
cudaMemcpy(dy, y, size, cudaMemcpyHostToDevice);
// launch the kernel function
daxpy<<<N/256,256>>>(a, dx, dy);
// copy device memory to host memory
cudaMemcpy(y, dy, size, cudaMemcpyDeviceToHost);
// deallocate device memory
cudaFree(dx); cudaFree(dy);

}

CUDA Runtime Functions

CUDA C Extensions

Kernels
• A kernel run N times in parallel by N different CUDA threads
• Defined using the __global__ (2 underscores before and after global) declaration specifier (must return void)
• Launched using the <<<…>>> execution configuration syntax
• Kernel Launches are asynchronous with respect to the host‒ They return immediately!

__global__ void daxpy(double a, double *x, double *y) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < N) {

y[i] += a*x[i];
}

}
daxpy<<<N/256,256>>>(a, dx, dy);

16

Example:

Thread Hierarchy
A Grid is a collection of Threads. Threads in a Grid execute a Kernel Function and are divided into Thread Blocks.
• Threads within a block (running on the same SM) cooperate via shared memory, atomic operations and barrier synchronization
• Threads in different blocks cannot cooperate (maybe running on different SMs)
• Each grid is executed on one device

17

Thread Block Size
• Between 256 and 512 threads per block is usually a good choice

• Overly small blocks will limit the # of concurrent threads due to limitation on maximum # of concurrent blocks/SM
• Overly large blocks can hinder performance, e.g., by increasing cost of any synchronization/barrier among all the threads in a block

• All CUDA-capable GPUs to date prefer # of threads per block to be a multiple of 32 if possible
• 32 threads is the warp size. Non-multiples of 32 waste some resources and cycles
• A multiple of 32 threads wide (x-dimension) facilitates coalesced memory access to adjacent memory addresses

18

What CUDA Supports
• Thread parallelism

• each thread is an independent thread of execution
• Data parallelism

• across thread in a block
• across blocks in a kernel

• Task parallelism
• different blocks are independent
• independent kernels executing in separate streams

19

Built-in Variables
The following built-in variables specify the grid and block dimensions and block and threads indices:
• gridDim is of type dim3 and contains the dimensions of the grid
• blockIdx is of type uint3 and contains the block index within the grid
• blockDim is of type dim3 and contains the dimensions of the block
• threadIdx is of type uint3 and contains the thread index within the block
• warpSize is of type int and contains the warp size in threads

20

whereuint3: 3-component vector of uint. It is a structure, and the 1st, 2nd, and 3rd components are accessible through the fields x, y, and z, respectively. dim3: integer vector type based on uint3. When defining a variable of type dim3, any component left unspecified is initialized to 1.

Thread IDs
Each thread uses IDs to decide what data to work on

21

__global__ void MatAdd(float A[N][N], float B[N][N],
float C[N][N]) {

int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
if (i < N && j < N)

C[i][j] = A[i][j] + B[i][j];
}
int main() {

. . .
dim3 threadsPerBlock(16, 16);
dim3 numBlocks(N/16, N/16);
MatAdd<<<numBlocks,threadsPerBlock>>>(A, B, C);
. . .

}
blockDim
gridDim

CUDA Memory Hierarchy
• Each thread has private local memory
• Each thread block has shared memory visible to all threads of the block
• All threads have access to the global memory
• All threads have access to the read-only constant and texture memory

22

Global Memory
• Main means of data transfer between host and device
• Contents visible to all threads
• Long latency access
• GPUs and CPUs both perform memory transactions at a larger granularity than the program requests (“cache line”).

• To use bandwidth effectively, when threads loads, they should:
• present a set of unit strided loads (dense accesses)
• Keep sets of loads aligned to vector boundaries

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

23

CUDA Device Memory Allocation
cudaMalloc : Allocates object in the device Global Memory

cudaFree : Frees object from device Global Memory
cudaError_t cudaMalloc(void ** devPtr,

size_t size)

cudaError_t cudaFree(void * devPtr)
double *x, *y, a, *dx, *dy;
size_t size = N*sizeof(double)
// allocate device memory
cudaMalloc((void **) &dx, size);
cudaMalloc((void **) &dy, size);
// deallocate device memory
cudaFree(dx);
cudaFree(dy); 24

Example:

CUDA Device Memory Allocation (cont’d)
cudaMallocPitch : Allocates 2D arrays on the device

cudaMalloc3D : Allocates 3D arrays on the device

Recommended for allocating 2D and 3D objects. The allocation is appropriately padded to meet the alignment requirement.

cudaError_t cudaMallocPitch(void ** devPtr,
size_t * pitch,
size_t width,
size_t height)

cudaError_t cudaMalloc3D(struct cudaPitchedPtr * pitchedDevPtr,
struct cudaExtent extent)

25

CUDA Host-Device Data Transfer

cudaMemcpy synchronously copies count bytes from src to dst
• kind is one of

• cudaMemcpyHostToHost
• cudaMemcpyHostToDevice
• cudaMemcpyDeviceToHost
• cudaMemcpyDeviceToDevice

• Asynchronous transfer: cudaMemcpyAsync
• PCIe 2 x16 peak bandwidth = 8 GB/s

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

cudaError_t cudaMemcpy(void * dst,
const void * src,
size_t count
enum cudaMemcpyKind kind)

26http://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY.html

CUDA Host-Device Data Transfer example

27

#define N 20480
__global__ void daxpy(double a, double *x, double *y)
{ ... }
int main(void) {

double *x, *y, a, *dx, *dy;
size_t size = N*sizeof(double);
// initialize x and y on host (skipped)
// allocate device memory for x and y
cudaMalloc((void **) &dx, size);
cudaMalloc((void **) &dy, size);
// copy host memory to device memory
cudaMemcpy(dx, x, size, cudaMemcpyHostToDevice);
cudaMemcpy(dy, y, size, cudaMemcpyHostToDevice);
// launch the kernel function
daxpy<<<N/256,256>>>(a, dx, dy);
// copy device memory to host memory
cudaMemcpy(y, dy, size, cudaMemcpyDeviceToHost);
// deallocate device memory
cudaFree(dx); cudaFree(dy);

}

Unified Memory in CUDA 6

28

Unified Memory
• Both CPUs and GPUs see a single coherent memory image with a common address space
• Unified Memory eliminates the need for explicit data movement via cudaMemcpy*
• cudaMallocManaged allocates memory that will be automatically managed by the Unified Memory system

cudaError_t cudaMallocManaged(void ** devPtr,
size_t size,

unsigned int flags)

29

#define N 20480
int main(void) {

double *x, *y, a;
size_t size = N*sizeof(double)
// allocate unified memory
cudaMallocManaged(&x, size);
cudaMallocManaged(&y, size);
// assign some values to x and y
// launch the kernel function
daxpy<<<N/256,256>>>(a, x, y);
cudaDeviceSynchronize();
for(int i=0; i<N; i++)
printf(“y[%d] = %e\n”, i, y[i]);

// deallocate memory
cudaFree(x); cudaFree(y);

}

int main(void) {
double *x, *y, a, *dx, *dy;
size_t size = N*sizeof(double);
// allocate host memory
x = (double *)malloc(size);
y = (double *)malloc(size);
// assign some values to x and y
// allocate device memory
cudaMalloc(&dx, size);
cudaMalloc(&dy, size);
// copy from host to device
cudaMemcpy(dx, x, size,

cudaMemcpyHostToDevice);
cudaMemcpy(dy, y, size,

cudaMemcpyHostToDevice);
// launch the kernel function
daxpy<<<N/256,256>>>(a, dx, dy);
// copy from device to host
cudaMemcpy(y, dy, size,

cudaMemcpyDeviceToHost);
// deallocate memory
cudaFree(dx); cudaFree(dy);
free(x); free(y);

}

Without Unified Memory

30

With Unified Memory

Kernel launches are asynchronous

Brief Note on Asynchronous Concurrent Execution
CUDA exposes the following operations as independent tasks that canoperate concurrently with one another:
• Computation on the host
• Computation on the device
• Memory transfers from the host to the device
• Memory transfers from the device to the host
• Memory transfers within the memory of a given device
• Memory transfers among devices

31

CUDA Device Management Functions
• cudaDeviceSynchronize : blocks until the device has completed all preceding requested tasks
• cudaGetDeviceCount : returns the number of compute-capable devices
• cudaSetDevice : sets device to be used for GPU execution
• cudaGetDevice : returns which device is currently being used
• cudaGetDeviceProperties : returns information about the compute-device
• cudaDeviceGetAttribute : returns device attribute value
• cudaSetDeviceFlags : sets flags to be used for device executions
• cudaGetDeviceFlags : gets the flags for the current device
• cudaDeviceReset : destroys and cleans up all resources associated with the current device in the current process
• etc.http://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__DEVICE.html

32

CUDA Function Type Qualifiers

• __device__ and __host__ can be used together
• __global__ defines a kernel function (a kernel run N times in parallel by N different CUDA threads); must return void
• A call to a __global__ function is asynchronous, which returns before the device has completed its execution

Function Type Qualifier Executed on Callable from
__device__ float DeviceFunc() device device
__global__ void KernelFunc() device host & device
__host__ float HostFunc() host host

33

Kernel Execution Configuration
• A kernel function must be called with an execution configuration
• The execution configuration is an expression of the form <<< Dg, Db, Ns, S >>>, where

o Dg specifies the dimension and size of the grid (of type dim3)
o Db specifies the dimension and size of each block (of type dim3)
o Ns specifies the size of shared memory allocated per block (optional)
o S specifies the the associated stream (optional)
__global__ void KernelFunc(...);
KernelFunc<<< Dg, Db, Ns, S >>> (...);

34

CUDA Variable Type Qualifier
resides in lifetime accessible from

__device__ global memory application all threads and hosts
__constant__ constant memory application all threads and hosts
__shared__ shared memory thread block threads within the block

• A __device__ variable can be additionally qualified with __manage__. Such a variable can be directly referenced from host code (Unified Memory access).
• Another way to allocate Unified Memory is to use cudaMallocManaged().

35

Common Runtime Component:Mathematical Functions
• pow, sqrt, cbrt, hypot
• exp, exp2, expm1
• log, log2, log10, log1p
• sin, cos, tan, asin, acos, atan, atan2
• sinh, cosh, tanh, asinh, acosh, atanh
• ceil, floor, trunc, round
• etc.‒ Available in both device and host code‒ Floating-point functions are overloaded for both single and double precisions (IEEE compliant)‒ When executed on the host, a given function uses the C runtime implementation if available‒ These functions are only supported for scalar types, not vector types

36

Device Runtime Component:Mathematical Functions
Some mathematical functions (e.g., sin(x)) have a less accurate, but faster device-only version (e.g., __sin(x))
• __pow
• __log, __log2, __log10
• __exp
• __sin, __cos, __tan

37

http://docs.nvidia.com/cuda/cuda-math-api/index.html

Host Runtime API
• Provides functions to deal with:

• Device management (including multi-device systems)
‒ e.g., on multi-device system, a host thread can set the device it operates on at any time by calling cudaSetDevice()

• Memory management
• Error handling
• etc.

• There is no explicit initialization function for the runtime; it initializes the first time a runtime function is called

38

http://docs.nvidia.com/cuda/cuda-runtime-api/index.html

Device Runtime Component:Synchronization Functions
• void __syncthreads()
• Synchronizes all threads in a block
• Variants

• int __syncthreads_count(int predicate)
• int __syncthreads_and(int predicate)
• int __syncthreads_or(int predicate)

• Used to coordinate communication between the threads of the same block
• Used to avoid read-after-write, write-after-read, write-after-write hazards when accessing the same addresses in shared or global memory
• Allowed in conditional constructs only if the conditional is uniform across the entire thread block

39

Device Runtime Component:Atomic Functions
• An atomic function performs a read-modify-write atomic operation on one 32-bit or 64-bit word residing in global or shared memory
• Atomic functions can only be used in device function

• int atomicAdd(int* address, int val);
• float atomicAdd(float* address, float val);
• etc.

40

Device Runtime Component:Memory Fence Functions
CUDA assumes a device with a weakly-ordered memory model:
• The order in which a CUDA thread writes data to shared memory, global memory, page-locked host memory, or the memory of a peer device is not necessarily the order in which the data is observed being written by another CUDA or host thread;
• The order in which a CUDA thread reads data from shared memory, global memory, page-locked host memory, or the memory of a peer device is not necessarily the order in which the read instructions appear in the program for instructions that are independent of each other.
• Memory fence functions can be used to enforce some ordering:

• void __threadfence_block()
• and variants

41

Compilation
• Any source file (with .cu suffix) containing CUDA language extensions must be compiled with nvcc
• nvcc is a compiler driver
• nvcc outputs:

• C code for host, which is then compiled with gcc (by default) on Linux
• PTX intermediate assembly code for device, which is

‒ Either compiled to object code directly
‒ Or interpreted at runtime

For example:
42

$ nvcc daxpy.cu -o daxpy.x

Compiling a CUDA Program

43

NVCC

C/C++ CUDA
Application

PTX to Target
Compiler

K20 … GPU
Target code

PTX CodeVirtual

Physical

CPU Code
Parallel Thread eXecution (PTX)
• Virtual Machine and ISA
• Programming model
• Execution resources and state

float4 me = gx[gtid];
me.x += me.y * me.z;

ld.global.v4.f32 {$f1,$f3,$f5,$f7}, [$r9+0];
mad.f32 $f1, $f5, $f3, $f1;

http://docs.nvidia.com/cuda/parallel-thread-execution/index.html

nvcc
• To learn more about the CUDA Compiler Driver nvcc,

• consult nvcc documentation: http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html
• or check the online help with nvcc -h

• By default, nvcc invokes gcc for host code compilation on Linux.
• You can use the -ccbin option to specify a different compiler for host code compilation. For example, if you prefer Intel C/C++ compiler, use the option -ccbin icpc.
• Use the -Xcompiler option to specify options directly to the compiler/preprocessor.

44

nvcc (cont’d)
• By default, nvcc compiles codes for Fermi GPUs (the default is -arch=compute_20 -code=sm_20,compute_20)

• The features of a GPU device depend on its compute capability, represented by a version number (X.Y)
• The compute capability of Fermi GPUs is 2.0
• The compute capability of Tesla K20 is 3.5
• http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities

• To compile codes for Nvidia Tesla K20 (a Kepler GPU), use option
-gencode arch=compute_35,code=sm_35

A better nvcc command for Tesla K20:

45

$ nvcc –Xcompiler "-O3" \
–gencode arch=compute_35,code=sm_35 \
daxpy.cu -o daxpy.x

Case Study: Matrix Multiplication
Cij = Aik

k
å Bkj

46

M0,2
M1,1

M0,1M0,0
M1,0

M0,3
M1,2 M1,3

Memory Layout of a Matrix in C

M0,2M0,1M0,0 M0,3 M1,1M1,0 M1,2 M1,3 M2,1M2,0 M2,2 M2,3

M2,1M2,0 M2,2 M2,3
M3,1M3,0 M3,2 M3,3

M3,1M3,0 M3,2 M3,3

M

// Matrices are stored in row-major order:
// M(row, col) = *(M.elements + row * M.width + col)
typedef struct {

int width;
int height;
float* elements;

} Matrix;

47

Matrix Multiplication:A Simple Host Version in C
// Matrix multiplication on the host
void MatMulOnHost(Matrix A, Matrix B, Matrix C)
{

for (int row = 0; row < A.height; ++row)
for (int col = 0; col < B.width; ++col) {
float Cvalue = 0;
for (int k = 0; k < A.width; ++k)

Cvalue += A.elements[row * A.width + k]
* B.elements[k * B.width + col];

C.elements[row * C.width + col] = Cvalue;
}

}

Simple, but unoptimized!Why?

Matrix Multiplication:A Simple CUDA Kernel
// Matrix multiplication kernel
__global__ void MatMulKernel(Matrix A, Matrix B, Matrix C)
{

// Each thread computes one element of C
float Cvalue = 0;
int row = blockIdx.y * blockDim.y + threadIdx.y;
int col = blockIdx.x * blockDim.x + threadIdx.x;
for (int k = 0; k < A.width; ++k)

Cvalue += A.elements[i * A.width + k]
* B.elements[k * B.width + j];

C.elements[row * C.width + col] = Cvalue;
}

49

Matrix Multiplication: Host Code
#define BLOCK_SIZE 16
void MatMul(const Matrix A, const Matrix B, Matrix C)
{

// Load A and B to device memory
Matrix d_A;
d_A.width = A.width; d_A.height = A.height;
size_t size = A.width * A.height * sizeof(float);
cudaMalloc(&d_A.elements, size);
cudaMemcpy(d_A.elements, A.elements, size, cudaMemcpyHostToDevice);
// Matrix d_B (skipped)
// Allocate C in device memory
Matrix d_C;
d_C.width = C.width; d_C.height = C.height;
size = C.width * C.height * sizeof(float);
cudaMalloc(&d_C.elements, size);
// Invoke kernel
dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
dim3 dimGrid(B.width / dimBlock.x, A.height / dimBlock.y);
MatMulKernel<<<dimGrid, dimBlock>>>(d_A, d_B, d_C);
// Read C from device memory
cudaMemcpy(C.elements, Cd.elements, size, cudaMemcpyDeviceToHost);
// Free device memory
cudaFree(d_A.elements); cudaFree(d_B.elements); cudaFree(d_C.elements);

} 50

Problems with the simple Implementation
• C = A * B
• Each thread computes one element of C

• Each thread loads a row of A from global memory (repetitive and very expensive!)
• Each thread loads a column of B from global memory
• Each thread performs one multiply and addition for each pair of A and B elements
• Compute to off-chip memory access ratio close to 1:1 (memory bandwidth limited)

• In total, A is read B.width times and B is read A.height times from global memory
51

Recap: CUDA Memory Hierarchy
• Each thread has private local memory (fastest)
• Each thread block has shared memory visible to all threads of the block

• Latency is an order of magnitude lower than global memory
• Bandwidth is 4x-8x higher than global memory

• All threads have access to the global memory (slowest)
• All threads have access to the read-only constant and texture memory

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

52

Matrix Multiplication with Shared Memory
• Each thread block is responsible for computing one square sub-matrix Csub
• Each thread is responsible for computing one element of Csub
• To fit into the device’s resources, these 2 rectangular sub-matrices of A & B are divided into square matrices of dimension (block_size, block_size)

Csub = A(A.width, block_size)* B(block_size, A.width)= Σ A(block_size, block_size)* B(block_size, block_size) 53

Matrix Multiplication with Shared Memory (cont’d)
1. Load the 2 corresponding square matrices from global memory to shared memory

‒ Each thread loads one element of each matrix2. Each thread computes one element of the product; and accumulate the result into a register
3. Loop
4. Write final result to global memory

54

M0,2
M1,1

M0,1M0,0
M1,0

M0,3
M1,2 M1,3

Revised Matrix Type

M0,2M0,1M0,0 M0,3 M1,1M1,0 M1,2 M1,3 M2,1M2,0 M2,2 M2,3

M2,1M2,0 M2,2 M2,3
M3,1M3,0 M3,2 M3,3

M3,1M3,0 M3,2 M3,3

M

// Matrices are stored in row-major order:
// M(row, col) = *(M.elements + row * M.width + col)
typedef struct {

int width;
int height;
int stride;
float* elements;

} Matrix;

55

__device__ functions
__device__ float GetElement(const Matrix A, int row, int col)
{

return A.elements[row * A.stride + col];
}
__device__ void SetElement(Matrix A, int row, int col, float value)
{

A.elements[row * A.stride + col] = value;
}
__device__ Matrix GetSubMatrix(Matrix A, int row, int col)
{

Matrix Asub;
Asub.width = BLOCK_SIZE;
Asub.height = BLOCK_SIZE;
Asub.stride = A.stride;
Asub.elements = &A.elements[A.stride * BLOCK_SIZE * row

+ BLOCK_SIZE * col];
return Asub;

} 56

Matrix Multiplication: Revised CUDA Kernel
// Matrix multiplication kernel
__global__ void MatMulKernel(Matrix A, Matrix B, Matrix C)
{

// Block row and column
int blockRow = blockIdx.y;
int blockCol = blockIdx.x;
// Each thread block computes one sub-matrix of C
Matrix Csub = GetSubMatrix(C, blockRow, blockCol);
// Each thread computes one elements of Csub
float Cvalue = 0;
// Thread row and column with Csub
int row = threadIdx.y;
int col = threadIdx.y;

Matrix Multiplication: Revised CUDA Kernel (cont’d)
// Loop over sub-matrices of A and B
for (int m = 0; m < (A.width / BLOCK_SIZE); ++m) {

// Get sub-matrices of A and B
Matrix Asub = GetSubMatrix(A, blockRow, m);
Matrix Bsub = GetSubMatrix(B, m, blockCol);
// Shared memory used to store Asub and Bsub
__shared__ float As[BLOCK_SIZE] [BLOCK_SIZE];
__shared__ float As[BLOCK_SIZE] [BLOCK_SIZE];
// Each threads loads one element of each matrix
As[row][col] = GetElement(Asub, row, col);
Bs[row][col] = GetElement(Bsub, row, col);
__syncthreads();
// Multiply Asub and Bsub together
for (int e = 0; e < BLOCK_SIZE; ++e)

Cvalue += As[row][e] * Bs[e][col];
__syncthreads();

}
// Write Csub to device memory
SetElement(Csub, row, col, Cvalue);

}

Matrix Multiplication: Revised Host Code
#define BLOCK_SIZE 16
void MatMul(const Matrix A, const Matrix B, Matrix C)
{

// Load A and B to device memory
Matrix d_A;
d_A.width = d_A.stride = A.width; d_A.height = A.height;
size_t size = A.width * A.height * sizeof(float);
cudaMalloc(&d_A.elements, size);
cudaMemcpy(d_A.elements, A.elements, size, cudaMemcpyHostToDevice);
// Matrix d_B (skipped)
// Allocate C in device memory
Matrix d_C;
d_C.width = d_C.stride = C.width; d_C.height = C.height;
size = C.width * C.height * sizeof(float);
cudaMalloc(&d_C.elements, size);
// Invoke kernel
dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
dim3 dimGrid(B.width / dimBlock.x, A.height / dimBlock.y);
MatMulKernel<<<dimGrid, dimBlock>>>(d_A, d_B, d_C);
// Read C from device memory
cudaMemcpy(C.elements, Cd.elements, size, cudaMemcpyDeviceToHost);
// Free device memory
cudaFree(d_A.elements); cudaFree(d_B.elements); cudaFree(d_C.elements);

} 59

Matrix Multiplication:without vs. with Shared Memory
• Without Shared Memory

• Each thread loads a row of A a column of B and from global memory.In total, A is read B.width times and B is read A.height times from global memory
• Each threads performs one multiply and addition for each pair of A and B elements. Compute to off-chip memory access ratio close to 1:1• With Shared Memory
• Each thread loads an element per sub-matrix of A and B and from global memory. In total, A is read (B.width/block_size) times and B is read (A.height/block_size) times from global memory
• Each threads performs block_size2 multiply and addition for each pair of A and B elements. Compute to off-chip memory access ratio close to block_size2 : 1

60

Imperatives for Efficient CUDA Code
• Expose abundant fine-grained parallelism

• need thousands of threads for full utilization
• Maximize on-chip work

• on-chip memory is orders of magnitude faster
• Minimize execution divergence

• SIMT execution of threads in 32-thread warps
• Minimize memory divergence

• warp loads and consumes a complete 128-byte cache line

61

Optimizing GPU Performance
• Understand the GPU architecture
• Understand how applications maps to architecture
• Use lots of threads and blocks
• Often better to redundantly compute in parallel
• Access memory in local regions
• Leverage high memory bandwidth
• Enable global memory coalescing
• Optimize memory copies
• Keep data in GPU device memory
• Experiment and measure

62

Thrust
• Thrust is a C++ template library for CUDA based on the Standard Template Library (STL)
• Part of CUDA SDK: http://docs.nvidia.com/cuda/thrust/index.html
• Provides STL-like templated interfaces to several algorithms and data structures designed for high performance heterogeneous parallel computing

• Thrust allows programmers to use other backends, including OpenMP and Intel TBB on multicore machineshttps://github.com/thrust/thrust/wiki/Device-Backends
63

Algorithms Data Structures
thrust::sort
thrust::reduce
thrust::sortEtc.

thrust::device_vectore
thrust::host_vector
thrust::device_ptrEtc

Thrust DAXPY Example

64

struct saxpy_functor
{

const double a;
saxpy_functor(float _a) : a(_a) {}
__host__ __device__

double operator()(const double& x, const double& y) const {
return a * x + y;

}
};
void saxpy(double A, thrust::device_vector<double>& X,

thrust::device_vector<double>& Y)
{

// Y <- A * X + Y
thrust::transform(X.begin(), X.end(), Y.begin(), Y.begin(), saxpy_functor(A));

}

What about OpenCL?
• OpenCL is a standardized, cross-platform API designed to support portable parallel application development on heterogeneous computing systems, including multicore CPUs, GPUs, DSPs, FPGAs and other processors
• OpenCL has a more complex platform and device management model than CUDA
• OpenCL’s data parallel execution model mirrors CUDA, but with different terminology

• OpenCL 1.0 was released in August 2009, 1.1 in 2010, 1.2 in 2011, 2.0 in 2013 and 2.1 in 2015. But Nvidia driver only supports OpenCL 1.1.
65

OpenCL parallelism concepts CUDA equivalent
Kernel Kernel
Host program Host program
NDRange (index space) Grid
Work item Thread
Work group Block

3 ways to Accelerate Applications with GPU
1. Programming Languages

• CUDA C, CUDA Fortran, OpenCL, etc
• Maximum flexibility

2. GPU-Accelerated Libraries
• cuBLAS, cuRAND, cuFFT, etc
• “Drop-in” acceleration

3. OpenACC directives
• Similar to OpenMP, supporting both C/C++ and Fortran
• Relatively easy, compared to writing CUDA kernels

66

GPU-Accelerated Libraries

https://developer.nvidia.com/gpu-accelerated-libraries
67

BLAS
• BLAS = Basic Linear Algebra Subprograms

Level 1: vector-vector operations that are linear (O(n)) in data and linear (O(n)) in work, e.g., AXPY
Level 2: matrix-vector operations that are quadratic (O(n2)) in data and quadratic (O(n2)) in work, e.g., GEMV
Level 3: operations that are quadratic (O(n2)) in data and cubic (O(n3)) in work, e.g., GEMM

• The first letter of the subprogram name indicates the precision used:
S: Real single precision, e.g., SGEMM
D: Real double precision, e.g., DGEMM
C: Complex single precision, e.g., CGEMM
Z: Complex double precision, e.g., ZGEMM

68

BLAS Implementations
• CPU

Netlib reference implementation
ATLAS
GotoBLAS / GotoBLAS2 / OpenBLAS
Intel Math Kernel Library (MKL): hand-optimized specifically for Intel processors

• GPU
cuBLAS: not a drop-in replacement of standard BLAS; one must use the cuBLAS / cuBLAS-XT API

http://docs.nvidia.com/cuda/cublas/index.html
NVBLAS: is a drop-in replacement of standard BLAS; can accelerate most BLAS Level-3 routines

http://docs.nvidia.com/cuda/nvblas/index.html
69

cuBLAS vs MKL

• cuBLAS 6.5 on K40m, ECC ON, input and output data on device
• MKL 11.0.4 on Intel IvyBridge 12-core E5-2697 v2 @2.7GHZhttps://developer.nvidia.com/cublas

ZGEMM

70

GEMM
• GEMM = General Matrix-Matrix multiplication
• C = α * op(A) * op(B) + β * C
• BLAS level 3 SUBROUTINE SGEMM (TRANSA, TRANSB, M, N, K, ALPHA,

A, LDA, B, LDB, BETA, C, LDC)
CHARACTER * TRANSA, TRANSB
INTEGER M, N, K, LDA, LDB, LDC
REAL ALPHA, BETA
REAL A(LDA, *), B(LDB, *), C(LDC, *)

cublasStatus_t cublasSgemm(cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb,
int m, int n, int k,
const float *alpha,
const float *A, int lda,
const float *B, int ldb,
const float *beta,
float *C, int ldc)

Fortran BLAS:

cuBLAS:

Matrix Multiplication: using cuBLAS
#include <cuda_runtime.h>
#include <cublas_v2.h>

const float alpha = 1.0f;
const float beta = 0.0f;
// create the handle
cublasHandle_t handle;
cublasCreate(&handle);
cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N,

m, n, k, &alpha,
d_B, WB, d_A, WA,
&beta, d_C, WA);

// destroy the handle
cublasDestroy(handle);

72

cublasStatus_t cublasSgemm(
cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb,
int m, int n, int k,
const float *alpha,
const float *A, int lda,
const float *B, int ldb,
const float *beta,
float *C, int ldc)

Typos?
No! Why?

Linking with cuBLAS
$ gcc matrixMulCUBLAS.c -l cudart -lcublas \

-o matrixMulCUBLAS

73

Introduction to OpenACC
• http://www.openacc.org/
• OpenACC (for Open Accelerators) API describes a collection of compiler directives to specify loops and regions of code to be offloaded from a host CPU to an attached accelerator
• Supports Fortran and C/C++
• Allows programmers to write high-level heterogeneous programs

• Without explicit accelerator initialization,
• Without explicit data or program transfers between host and accelerator

• Allows programmers to start simple
• Enhance with additional guidance for compiler on loop mappings, data location, and other performance details

74

History of OpenACC
• Initially collaboration between CAPS Enterprise, Cray Inc., Portland Group (PGI), and NVIDIA
• Built from OpenMP-style directives

• #pragma omp parallel vs. #pragma acc parallel
• OpenACC 1.0 specification was released in November 2011 at SuperComputing (SC) 2011
• OpenACC 2.5 was released in October 2015
• Compilers available from Cray, CAPS, and PGI (acquired by Nvidia in 2013)
• Creators of OpenACC are all members of the OpenMP Working Group on accelerators. Potential API merge with OpenMP in the future?

75

SAXPY using OpenACC & OpenMP
C Fortran
void saxpy(int n,

float a,
float *x,
float *restrict y)

{
#pragma omp parallel for
#pragma acc kernels
for (int i = 0; i < n; ++i)

y[i] += a*x[i];
}
...
// perform SAXPY on 1M elements
saxpy(1<<20, 2.0, x, y);
...

subroutine saxpy(n, a, x, y)
real :: x(:), y(:), a
integer :: n, i

!$omp parallel do
!$acc kernels
do i=1,n

y(i) = a*x(i) + y(i)
enddo
!$acc end kernels
!$omp end parallel do
end subroutine saxpy
...
! perform SAXPY on 1M elements
call saxpy(2**20, 2.0, x_d, y_d)
...

Compilation
• On Hyades, We can use PGI compilers to compile OpenACC programs
• Compile the code as a serial program (all directives ignored):

$ pgcc daxpy.c -o daxpy.x
$ pgfortran daxpy.f90 -o daxpy.x

• Compile the code as an OpenMP program (OpenACC directives ignored):
$ pgcc -mp daxpy.c -o daxpy.x
$ pgfortran -mp daxpy.f90 -o daxpy_omp.x

• Compile the code as an OpenACC program (OpenMP directives ignored):
$ pgcc -acc -Minfo=accel -ta=nvidia,kepler \

-Mcuda=6.5 daxpy.c -o daxpy_acc.x
$ pgfortran -acc -Minfo=accel -ta=nvidia,kepler \

-Mcuda=6.5 daxpy.f90 -o daxpy_acc.x
77

OpenACC Directive Syntax
Free-formFortran

!$acc directive [clause [[,] clause] ...]
structured_block

!$acc end directive
C/C++ #pragma acc directive [clause [[,] clause] ...] new-line

{structured_block}

78

• In Fortran fixed-for source files, !$OMP C$OMP *$OMP are accepted sentinels and must occupy columns 1-5

OpenACC Directives Overview
parallel starts parallel execution on the accelerator
kernels defines a region that is to be converted to a sequence of kernels for execution on the accelerator
data defines contiguous data to be allocated on the accelerator
host_data makes the address of accelerator data available on the host
loop defines types of parallelism to apply to proceeding loop
cache defines elements or subarrays that should be fetched into cache
declare defines that a variable should be allocated in accelerator memory
update update all or part of host memory from device memory, or vice versa
wait forces program to wait for completion of asynchronous activity

79

OpenACC Execution Model
• Host-directed execution with an attached accelerator device

‒ Compute intensive regions are offloaded to the accelerator device under control of the host
• The device executes

• parallel regions, which typically contain work-sharing loops
• or kernels regions, which typically contain one or more loops which are executed as kernels

• Confused? Then read “OpenACC Kernels and Parallel Constructs” by Michael Wolfe (PGI):
https://www.pgroup.com/lit/articles/insider/v4n2a1.htm

80

The kernels Directive
Each loop executed as a separate kernel on the GPU.
!$acc kernels

do i=1,n
a(i) = 0.0
b(i) = 1.0
c(i) = 2.0

end do
do i=1,n

a(i) = b(i) + c(i)
end do

!$acc end kernels

kernel 1

kernel 2

81

OpenACC Execution Model on CUDA
• The OpenACC execution model has three levels: gang, worker, and vector
• For GPUs, the mapping is implementation-dependent. Some possibilities:

• gang==block, worker==warp, and vector==threads of a warp
• gang==block, vector==threads of a block, with worker omitted

• Depends on what the compiler thinks is the best mapping for the problem

82

OpenACC Clauses Overview
Each directive can have zero or more clauses associated.
Example clauses are:

Clauses found in either kernels or parallel directives:
reduction (op:list)
private (list)
firstprivate (list)

83

if (condition) condition used to determine if command should be executed (data transfer, accelerator computation, etc.)
async [(expression)] tells the current command to be executedasynchronously. Used with wait for synchronization.

similar to OpenMP

Clauses – parallel and loop
Clauses – parallel directive

Clauses – loop directive

84

num_gangs (e) specify the number of gangs to execute in the region
num_workers (e) specify number of workers to launch in each gang
vector_length (e) define vector length to use

collapse (n) specifies # of loops associated
gang (e) distribute across gang
worker (e) distribute across workers (within gang)
vector (e) operate in SIMD (within gang and worker)
seq execute sequentially on the accelerator
independent tell the compiler loops are data-independent

Mapping OpenACC to CUDA threads & blocks

#pragma acc kernels loop
for (int i = 0; i < n; ++i) y[i] += a*x[i];

#pragma acc kernels loop gang(100), vector(128)
for (int i = 0; i < n; ++i) y[i] += a*x[i];
#pragma acc parallel num_gangs(100), vector_length(128)
{
#pragma acc loop gang, vector
for (int i = 0; i < n; ++i) y[i] += a*x[i];

}

Perhaps 50 blocks, 256 threads per block

100 blocks, 128 threads per block

85

Data Clauses
copy (list) Allocates memory on device and copies data from host to device when entering region and copies data to the host when exiting region
copyin (list) Allocates memory on device and copies data from host to device when entering region
copyout (list) Allocates memory on device and copies data to the host when exiting region
create (list) Allocates memory on device but does not copy
present (list) Data is already present on device from another containing data region
deviceptr (list) Pointers in the list are device pointers
device_resident (list) Allocate memory on device instead of host

86

Data Clauses
pcopy (list) Allocates memory on device and copies data from host to device when entering region and copies data to the host when exiting region
pcopyin (list) Allocates memory on device and copies data from host to device when entering region
pcopyout (list) Allocates memory on device and copies data to the host when exiting region
pcreate (list) Allocates memory on device but does not copy
present (list) Data is already present on device from another containing data region
deviceptr (list) Pointers in the list are device pointers
device_resident (list) Allocate memory on device instead of host

87
Checks for presence before issuing data command. pcopy is equivalent to present_or_copy, etc.

Clauses – host_data and update
Clauses – host_data directive

Clauses – update directive

88

use_device (list) make the device address data available in host code

host (list) variables to copy from device to host
device (list) variables to copy from host to device

Combing Clauses
Similar to OpenMP, we can combine directives
• #pragma acc parallel loop [clause [[,] clause] ...]
• #pragma acc kernels loop [clause [[,] clause] ...]

A loop must directly follow, similar to parallel for in OpenMP

89

OpenACC Runtime Routines
Header file:

List of runtime routines:
int acc_get_num_devices (acc_device_t);

gets number of devices of passed type
int acc_set_device_type (acc_device_t);

sets device type to use
acc_device_t acc_get_device_type ();

gets current device type
void acc_set_device_num (int, acc_device_t);

sets device based on index and type
void acc_get_device_num (acc_device_t);

gets current device number 90

Fortran use openaccor
#include "openacc_lib.h"

C/C++ #include "openacc.h"

Runtime Routines – Synchronization
int acc_async_test (int);

tests to see if a specified asynchronous tasks are completed
int acc_async_test_all ();

tests to see if all asynchronous tasks are completed
void acc_async_wait (int);

waits until specified asynchronous task is completed
void acc_async_wait_all ();

waits until all asynchronous tasks are completed

91

Runtime Routines – Setup and Teardown
void acc_init (acc_device_t);

initializes OpenACC runtime for passed device type
void acc_shutdown (acc_device_t);

shuts down connection to passed device type
int acc_on_device (acc_device_t);

tells the program whether it’s executing on passed device type
void* acc_malloc (size_t);

allocates memory on the device
void acc_free (void*);

rees memory on the device
92

Matrix Multiplication: with OpenACC

// compute matrix multiplication
#pragma acc kernels copyin(a,b) copy(c)

for (i = 0; i < SIZE; ++i) {
for (j = 0; j < SIZE; ++j) {

for (k = 0; k < SIZE; ++k) {
c[i][j] += a[i][k] * b[k][j];

}
}

}

93

Case Study: Jacobi Iteration
Laplace equation in 2D: 2f(x, y) = 0

4
1)j-(i,A+1)j-(i,A+j)1,(i+A+j)1,(i-A=j)(i,A 1k+1k+1k+1k+1k+

94

Jacobi Iteration: C Code
while (err > tol && iter < iter_max) {
err=0.0;
for (int j = 1; j < n-1; j++) {
for (int i = 1; i < m-1; i++) {
Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);
err = max(err, abs(Anew[j][i] - A[j][i]);

}
}
for (int j = 1; j < n-1; j++) {
for (int i = 1; i < m-1; i++) {
A[j][i] = Anew[j][i];

}
}
iter++;

} 95

Jacobi Iteration: OpenMP C Code
while (err > tol && iter < iter_max) {
err=0.0;

#pragma omp parallel for shared(m, n, Anew, A) reduction(max:err)
for (int j = 1; j < n-1; j++) {
for (int i = 1; i < m-1; i++) {
Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);
err = max(err, abs(Anew[j][i] - A[j][i]);

}
}

#pragma omp parallel for shared(m, n, Anew, A)
for (int j = 1; j < n-1; j++) {
for (int i = 1; i < m-1; i++) {
A[j][i] = Anew[j][i];

}
}
iter++;

} 96

Jacobi Iteration: OpenACC C v1
while (err > tol && iter < iter_max) {
err=0.0;

#pragma acc kernels loop reduction(max:err)
for (int j = 1; j < n-1; j++) {
for (int i = 1; i < m-1; i++) {
Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);
err = max(err, abs(Anew[j][i] - A[j][i]);

}
}

#pragma acc kernels loop
for (int j = 1; j < n-1; j++) {
for (int i = 1; i < m-1; i++) {
A[j][i] = Anew[j][i];

}
}
iter++;

} 97

What went wrong?
while (err > tol && iter < iter_max) {
err=0.0;

#pragma acc kernels loop reduction(max:err)
for (int j = 1; j < n-1; j++) {
for (int i = 1; i < m-1; i++) {
Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);
err = max(err, abs(Anew[j][i] - A[j][i]);

}
}

#pragma acc kernels loop
for (int j = 1; j < n-1; j++) {
for (int i = 1; i < m-1; i++) {
A[j][i] = Anew[j][i];

}
}
iter++;

} 98

A & Anew resident on host

A & Anew resident on device

A & Anew resident on host

A & Anew resident on device

Excessive data transfer!

copy

copy

copy

copy

Jacobi Iteration: OpenACC C v2
#pragma acc data copy(A), create(Anew)
while (err > tol && iter < iter_max) {

err=0.0;
#pragma acc kernels loop reduction(max:err)

for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {
Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);
err = max(err, abs(Anew[j][i] - A[j][i]);

}
}

#pragma acc kernels loop
for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {
A[j][i] = Anew[j][i];

}
}
iter++;

}
99

Jacobi Iteration: OpenACC C v3
#pragma acc data copy(A), copyin(Anew)
while (err > tol && iter < iter_max) {

err=0.0;
#pragma acc kernels loop

for(int j = 1; j < n-1; j++) {
#pragma acc loop gang(16) vector(32)

for(int i = 1; i < m-1; i++)
Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);
}

#pragma acc kernels loop reduction(max:err)
for(int j = 1; j < n-1; j++) {

#pragma acc kernels loop gang(16) vector(32)
for(int i = 1; i < m-1; i++) {
A[j][i] = 0.25 * (Anew[j][i+1] + Anew[j][i-1] +

Anew[j-1][i] + Anew[j+1][i]);
err = max(err, abs(Anew[j][i] - A[j][i]);

}
}
iter+=2;

} 100

specify # of gangs/vectors (i.e., grid/block dimension)

replace memcpy kernel with a second instance of the stencil kernel

Introduction to Intel Xeon Phi
• Intel Xeon Phi is the brand name for Intel’s manycore coprocessors
• Many Integrated Core (MIC) Architecture

• Developed from earlier work on Larrabee (a cancelled GPGPU chip)
• Knights Ferry, Intel’s MIC prototype board, was announced in May 2010
• Knights Corner, Intel’s 1st MIC commercial product line, was announced in 2011
• Knights Landing, the 2nd generation MIC product, was announced in June 2013
• Knights Hill, the codename for the 3rd generation MIC architecture, was announced at SC14

• Xeon Phi 31S1P (Knights Corner) coprocessors power the world’s fastest supercomputer – the Chinese Tianhe-2 system
• In Hyades, there is a MIC node, Aesyle, with two Xeon Phi 5110P coprocessors

101

Intel Xeon Phi 5110P
• Knights Corner architecture
• 22nm process
• 60 cores (in-order, dual-issue x86 design)
• 4 threads per core
• Core speed: 1.053 GHz
• 512-bit AVX
• Double precision performance: 1.01 TFLOPS= 1.053 (GHz) x 60 (cores) x 512/64 x 2 (FMA)
• Memory: 8GB GDDR55 (GT/s) x 16 (channels) x 4 (B) = 320 GB/s
• PCI express 2.0 x16500 (MB/s) x 8/10 x 16 = 8 GB/s (16 GB/s duplex)

102

http://www.tomshardware.com/reviews/xeon-phi-larrabee-stampede-hpc,3342-3.html
103

Xeon Phi runs Linux!
[dong@aesyle ~]$ ssh mic0

dong@aesyle-mic0:~$ uname -a
Linux aesyle-mic0.ucsc.edu 2.6.38.8+mpss3.4.1 #1 SMP
Fri Oct 17 16:05:10 PDT 2014 k1om GNU/Linux

dong@aesyle-mic0:~$ grep processor /proc/cpuinfo
processor : 0
...
processor : 239

dong@aesyle-mic0:~$ cat /proc/meminfo
MemTotal: 7882352 kB

104

Xeon Phi runs Linux! (cont’d)
Size Used Available Use% Mounted

dong@aesyle-mic0:~$ df –h
Filesystem Size Used Available Use% Mounted
on
none 6.4G 154.2M 6.2G 2% /
none 3.8G 44.0K 3.8G 0% /dev
10.7.7.1:/export/home

35.5T 6.2T 29.3T 17% /home
10.8.8.142@o2ib:10.8.8.143@o2ib:/pfs

145.4T 126.5T 18.9T 87% /pfs

On Hyades, the shared file systems, NFS & Lustre, are mounted on the Xeon Phi coprocessors, as wellas on the hosts
105

MIC Execution Modes
• Native Mode

Applications run directly on the Xeon Phi coprocessors
• Symmetric Mode

Applications run on both the host processors and the Xeon Phi coprocessors at the same time
• Offload Mode

An application starts execution on the host; as the computation proceeds it offloads part or all of the computation from its processes or threads to the coprocessors.

106

Native Execution Mode
• The same serial, OpenMP, and MPI programs can be compiled to run on Xeon Phi, without any modification of the source code
• However, the code must be cross-compiled for the k1om architecture
• x86 or x86-64 binaries can’t run on Xeon Phi

107

Native Serial Program
• Cross-compiler the serial program for Xeon Phi on the host, using the Intel Compilers:$ icc -mmic serial.c -o serial.k1om$ ifort -mmic serial.f90 -o serial.k1om
• If you prefer GCC:

$ /usr/linux-k1om-4.7/bin/x86_64-k1om-linux-gcc \serial.c –o serial.k1om
• On Hyades, the same shared file systems are mounted on Xeon Phi, so you can run the binary directly with:$ ssh mic0 /pfs/dong/serial.k1om
• Otherwise, you’ll have to upload the binary from the host to Xeon Phi first, using scp/sftp

108

Native OpenMP Program
• Cross-compiler the OpenMP program for Xeon Phi on the host, using Intel Compilers:
$ icc -mmic -openmp omp.c \

–o omp.k1om
$ ifort -mmic -openmp omp.f90 \

–o omp.k1om

• Run the OpenMP executable natively on Xeon Phi with:
$ ssh mic0 OMP_NUM_THREADS=60 \

/pfs/dong/omp.k1om

109

Native MPI Program
• Cross-compiler the MPI program for Xeon Phi on the host, using Intel Compilers and Intel MPI:
$ mpiicc –mmic mpi.c -o mpi.k1om
$ mpiifort –mmic mpi.f90 \

–o mpi.k1om

• Run an MPI session of 60 processes natively on Xeon Phi with:
$ ssh mic0 mpirun -n 60 \

/pfs/dong/mpi.k1om

110

Symmetric Execution Mode
• Compiler the MPI code for both the x86-64 and the x1om architectures, using Intel Compilers and Intel MPI:

$ mpiicc mpi.c -o mpi.x86-64
$ mpiicc –mmic mpi.c –o mpi.k1om

• Run an MPI program on all the processor and coprocessor cores:
$ mpirun \

-n 12 -host aesyle /pfs/dong/mpi.x86-64 : \
-n 60 -host mic0 /pfs/dong/mpi.k1om : \
-n 60 -host mic1 /pfs/dong/mpi.k1om

• Load-balance will be a serious issue!

111

Offload Execution Mode
• Compiler Assisted Offload (CAO)

• Explicit
Using directives (Intel-specific or OpenMP 4.0); explicitly directing data movement and code execution

• Implicit
Using Shared Virtual Memory (Intel Cilk Plus)

• Automatic Offload (AO)
• Computational intensive calls to Intel Math Kernel Library (MKL)
• MKL automatically manage details
• More than offload: work division between host and MIC

112

Further Readings
• The Evolution of GPUs for General Purpose Computing, by Ian Buck (Nvidia): http://www.nvidia.com/content/GTC-2010/pdfs/2275_GTC2010.pdf
• CUDA Toolkit Documentation: http://docs.nvidia.com/cuda/
• CUDA C Programming Guide: http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
• Professional CUDA C Programming, by Cheng, Grossman, & McKercher, Wrox, 2014

ebook available at UCSC library
• PGI CUDA Fortran Programming Guide and Reference: https://www.pgroup.com/doc/pgicudafortug.pdf
• CUDA Fortran for Scientists and Engineers, by Fatica & Ruetsch, Elsevier 2014http://www.sciencedirect.com/science/book/9780124169708

113

Further Readings (cont’d)
• OpenACC 1.0 Specification: http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf
• OpenACC 1.0 Quick Reference Guide: http://www.openacc.org/sites/default/files/OpenACC_API_QuickRefGuide.pdf
• OpenACC 2.5 Specification: http://www.openacc.org/sites/default/files/OpenACC_2pt5.pdf
• OpenACC 2.5 Quick Reference Guide: http://live-openacc.pantheonsite.io/sites/default/files/OpenACC_2.5_ref_guide.pdf
• PGI Accelerator Compilers with OpenACC Getting Started Guide: https://www.pgroup.com/doc/openacc_gs.pdf
• OpenACC Programming and Best Practices Guide: http://www.openacc.org/sites/default/files/OpenACC_Programming_Guide_0.pdf

114

Further Readings (cont’d)
• Intel Xeon Phi Coprocessor High-Performance Programming, by Jeffers & Reinders, Morgan Kaufmann, 2013

ebook available at UCSC library
• Intel Xeon Phi Coprocessor Architecture and Tools: The Guide for Application Developers, by Rezaur Rahman, Apress, 2013http://www.apress.com/9781430259268
• Fortran vs. C offload directives and functions: https://software.intel.com/en-us/articles/fortran-vs-c-offload-directives-and-functions
• OpenMP Specifications: http://openmp.org/wp/openmp-specifications/
• OpenMP 4.0 Specifications: http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
• OpenMP 4.0.2 Examples: http://openmp.org/mp-documents/openmp-examples-4.0.2.pdf

115

