AMS 250: An Introduction to High Performance Computing

Parallel Algorithms

Shawfeng Dong

shaw@ucsc.edu

(831) 459-2725

Astronomy & Astrophysics

University of California, Santa Cruz

Outline

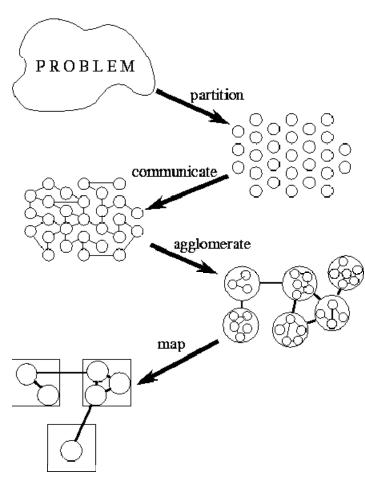
- Methodical Design PCAM
- Types of Parallel Programs
- Dense Matrix Algorithms
- Sorting Algorithms
- Graph Algorithms

Methodological Design

PCAM

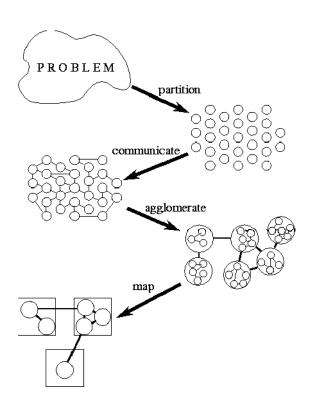
- Partition
 - Task/data decomposition
- Communication
 - Task execution coordination
- Agglomeration
 - Evaluation of the structure
- Mapping
 - Resource assignment

Designing and Building Parallel Programs, by *Ian Foster*: http://www.mcs.anl.gov/~itf/dbpp/text/book.html



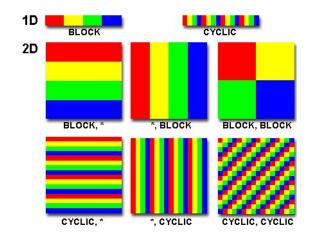
Partition

- Partition stage is intended to expose opportunities for parallel execution
- The focus is on defining large number of small task to yield a *fine-grained* decomposition of the problem
- A good partition divides into small pieces both the *computation* associated with a problem and the *data* on which the computation operates
- Domain decomposition focuses on data
- Functional decomposition focuses on computation
- Mixing of domain/functional decomposition is possible

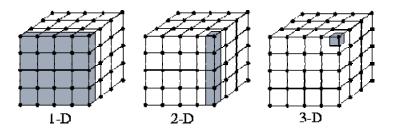


Domain Decomposition

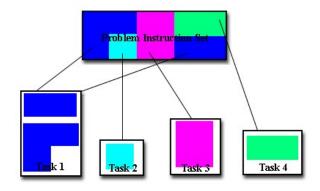
- 1D grid
- 2D grid



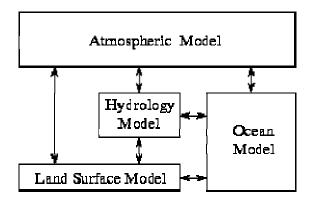
• 3D grid



Functional Decomposition



Functional decomposition of a climate model

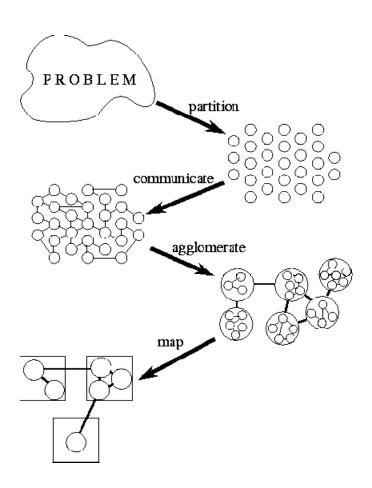


Partitioning Checklist

- 1. Does your partition define at least an order of magnitude more tasks than there are processors in your target computer? If not, you have little flexibility in subsequent design stages.
- 2. Does your partition avoid redundant computation and storage requirements? If not, the resulting algorithm may not be scalable to deal with large problems.
- 3. Are tasks of comparable size? If not, it may be hard to allocate each processor equal amounts of work.
- 4. Does the number of tasks scale with problem size? If not, your parallel algorithm may not be able to solve larger problems with more processors
- 5. Have you identified several alternative partitions?

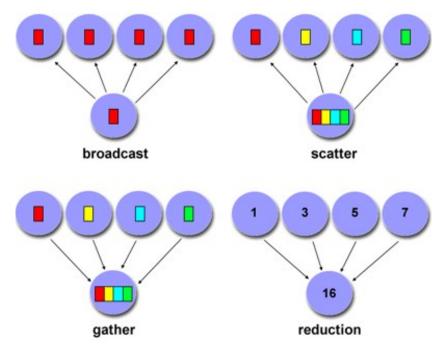
Communication

- Tasks generated by a partition must interact to allow the computation to proceed
 - Information flow: data and control
- Types of communication
 - Local vs. Global: locality of communication
 - Structured vs. Unstructured: communication patterns
 - Static vs. Dynamic: determined by runtime conditions
 - Synchronous vs. Asynchronous: degree of coordination
- Granularity and frequency of communication
 - Size of data exchange
- Think of communication as interaction and control
 - Applicable to both shared and distributed memory parallelism



Types of Communication

- Point-to-point
- Group-based
- Hierarchical
- Collective

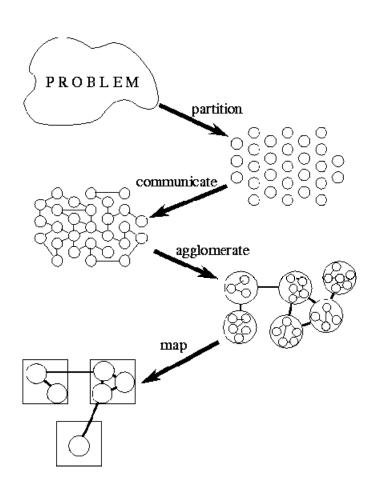


Communication Design Checklist

- 1. Do all tasks perform about the same number of communication operations?
 - If not, revisit your design to see whether communication operations can be distributed more equitably.
- 2. Does each task communicate only with a small number of neighbors?
 - If each task must communicate with many other tasks, evaluate the possibility of formulating this global communication in terms of a local communication structure.
- 3. Are communication operations able to proceed concurrently?
 - If not, try to use divide-and-conquer techniques to uncover concurrency.
- 4. Is computation associated with different tasks able to proceed concurrently?
 - If not, try to reorder computation and communication operations.

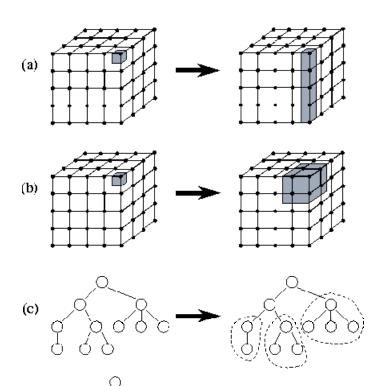
Agglomeration

- In the 3rd stage, we move from the abstract towards concrete implementation
- Revisit partitioning and communication, with a view to obtaining an efficient algorithm
- Is it useful to combine, or agglomerate tasks?
- Is it useful to replicate data and/or computation?
- Three goals guiding decisions concerning agglomeration and replication:
 - 1. Reducing communication cost by increasing computation and communication *granularity*
 - 2. Retaining *flexibility* with respect to scalability and mapping decisions
 - 3. Reducing *software engineering* costs



Examples of Agglomeration

- a. Reducing the dimension of the decomposition from 3 to 2
- b. Combing adjacent tasks to yield a 3D decomposition of higher granularity
- c. Coalescing a subtrees in a divide-and-conquer structure
- d. Combining nodes in a tree algorithm

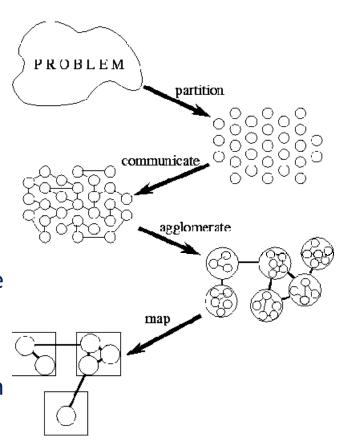


Agglomeration Design Checklist

- 1. Has agglomeration reduced communication costs by increasing locality?
- 2. If agglomeration has replicated computation, do the benefits of this replication outweigh its costs?
- 3. If agglomeration replicates data, does the replication compromise scalability?
- 4. Has agglomeration yielded tasks with similar computation and communication costs?
- 5. Does the number of tasks still scale with problem size?
- 6. If agglomeration eliminated opportunities for concurrent execution, is there still sufficient concurrency?
- 7. Is there room for more agglomeration?
- 8. If you are parallelizing an existing sequential program, have you considered the cost of the modifications required to the sequential code?

Mapping

- Specify where each task is to execute
 - Less of a concern on shared-memory systems
- Two sometimes-conflicting strategies to minimize execution time:
 - 1. Place tasks that are able to execute concurrently on *different* processors, so as to enhance concurrency
 - 2. Place tasks that communicate frequently on the *same* processor, so as to increase locality
- The mapping problem is *NP-complete*
 - Use specialized strategies, heuristics and problem classifications



Mapping Algorithms

- Load-balancing algorithms
- Data-based algorithms
 - Think of computational load with respect to amount of data being operated on
 - Assign data (i.e., work) in some known manner to balance
 - Take into account data interactions
- Task-based (task-scheduling) algorithms
 - Used when functional decomposition yields many tasks with weak locality requirements
 - Use task assignment to keep processors busy computing
 - Consider centralized and decentralize schemes

Mapping Design Checklist

- 1. If considering an SPMD design for a complex problem, have you also considered an algorithm based on dynamic task creation and deletion?
- 2. If considering a design based on dynamic task creation and deletion, have you also considered an SPMD algorithm?
- 3. If using a centralized load-balancing scheme, have you verified that the manager will not become a bottleneck?
- 4. If using a dynamic load-balancing scheme, have you evaluated the relative costs of different strategies?
- 5. If using probabilistic or cyclic methods, do you have a large enough number of tasks to ensure reasonable load balance?

Types of Parallel Programs

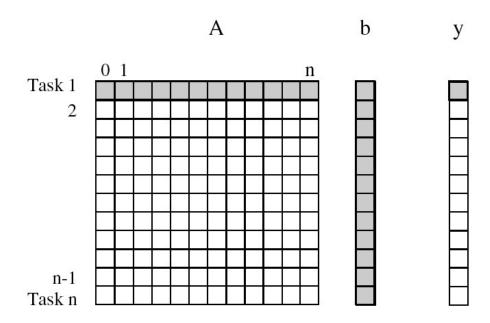
- Flavors of parallelism
 - Data parallelism
 - all processors do same thing on different data
 - Task parallelism
 - processors are assigned tasks that do different things
- Parallel execution models
 - Data parallel
 - Pipelining (Producer-Consumer)
 - Task graph
 - Work pool
 - Master-Worker

Data Parallel

- Data is decomposed (mapped) onto processors
- Processors performance similar (identical) tasks on different data
- Tasks are applied concurrently
- Load balance is obtained through data partitioning
 - Equal amounts of work assigned
- There may be interactions between processors
- Data parallelism scalability
 - Degree of parallelism tends to increase with problem size
- Single Program Multiple Data (SPMD)
 - Convenient way to implement data parallel computation
 - More associated with distributed memory parallel execution

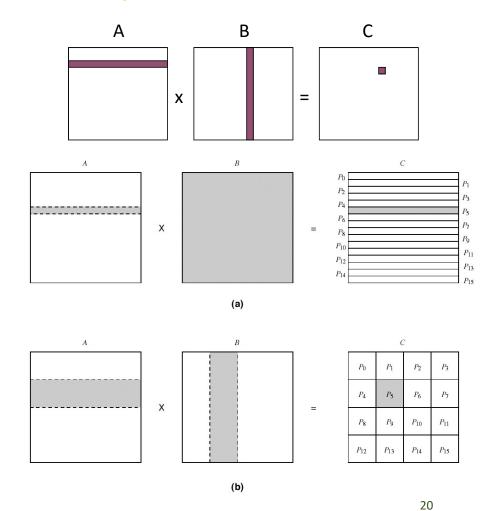
Matrix - Vector Multiplication

- $A \times b = y$
- Allocate tasks to rows of A
 y[i] = ∑A[i,j]*b[j]
- Dependencies?
- Speedup?
- Computing each element of y can be done independently



Matrix Multiplication

- A x B = C
- A[i,:] B[:,j] = C[i,j]
- Row partitioning
 - N tasks
- Block partitioning
 - N^2/m^2 tasks
- Shading shows data sharing in matrix B



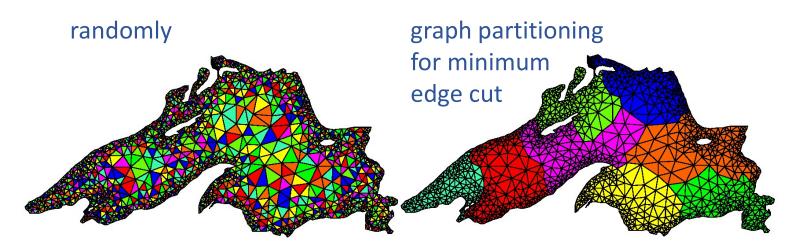
Granularity of Task and Data Decompositions

- Granularity can be with respect to tasks and data
- Task granularity
 - Equivalent to choosing the number of tasks
 - Fine-grained decomposition results in large number of tasks
 - Coarse-grained decomposition has smaller number of tasks
 - Translates to data granularity after number of tasks chosen
 - consider matrix multiplication
- Data granularity
 - Think of computational load with respect to amount of data being operated on
 - Relative to data as a whole
 - Decomposition decisions based on input, output, input-output, or intermediate data

Mesh Allocation to Processors

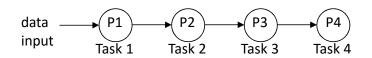
- Mesh model of Lake Superior
- How to assign mesh elements to processors

• Distribution onto 8 processors:



Pipeline Model

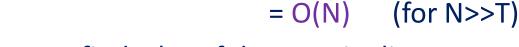
- Stream of data operated on by succession of tasks
 - Task 1 Task 2 Task 3 Task 4
 - Tasks are assigned to processors
- Consider N data units
 - Sequential



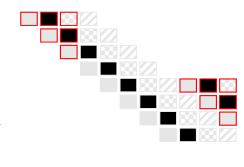
• Parallel (each task assigned to a processor)

Pipeline Performance

- N data and T tasks
- Each task takes unit time t
- Sequential time = N*T*t
- Parallel pipeline time = start + finish + (N-T+1)* t
 = O(N) (for N>>T)

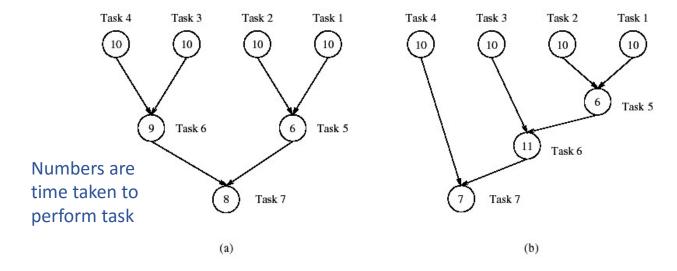


- Try to find a lot of data to pipeline
- Try to divide computation in a lot of pipeline tasks
 - More tasks to do (longer pipelines)
 - Shorter tasks to do
- Pipeline computation is a special form of producer-consumer parallelism
 - output of producer tasks = input of consumer tasks



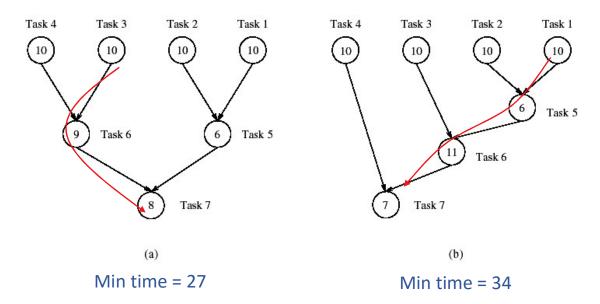
Tasks Graphs

- Computations in any parallel algorithms can be viewed as a task dependency graph
- Task dependency graphs can be non-trivial
 - Pipeline
 - Arbitrary (represents the algorithm dependencies)



Task Graph Performance

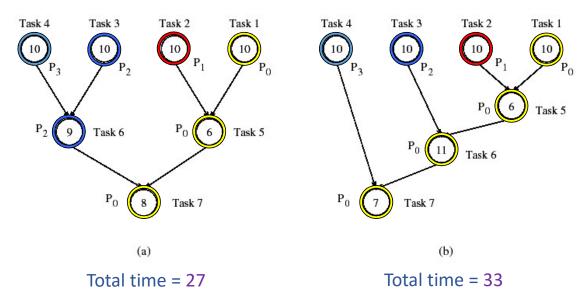
- Determined by the critical path (span)
 - Sequence of dependent tasks that takes the longest time



• Critical path length bounds parallel execution time

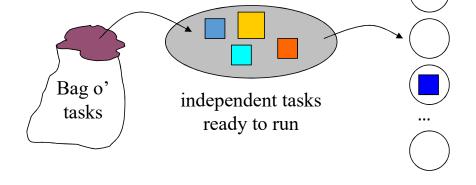
Task Assignment to Processors

- Given a set of tasks and number of processors
- How to assign (map) tasks to processors?
- Should take dependencies into account
- Task mapping will determine execution time



Bag o' Tasks Model and Worker Pool

- Set of tasks to be performed
- How do we schedule them?
 - Find independent tasks
 - Assign tasks to available processors
- Bag o' Tasks approach
 - Tasks are stored in a bag waiting to run
 - If all dependencies are satisfied, it is moved to a ready-to-run queue



- Scheduler assigns a task to a free processor
- Dynamic approach that is effective for load balancing

Processors

Master-Worker Parallelism

- One or more master processes generate work
- Masters allocate work to worker processes
- Workers are idle if they have nothing to do
- Workers are mostly stupid and must be told what to do
 - Execute independently
 - May need to synchronize, but must be told to do so
- Master may become the bottleneck if not careful

Search-Based (Exploratory) Decomposition

• 15-puzzle problem:

https://en.wikipedia.org/wiki/15 puzzle

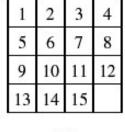
- 15 tiles numbered 1 through 15 placed in 4x4 grid
 - Blank tile located somewhere in grid
 - Initial configuration is out of order
 - Find shortest sequence of moves to put in order

1	2	3	4
5	6	A	8
9	10	7	11
13	14	15	12
	• •		

(a)

1	2	3	4
5	6	7	8
9	10	¢	-11
13	14	15	12

1	2	3	4
5	6	7	8
9	10	11	٥
13	14	15	12



(c)

(d)

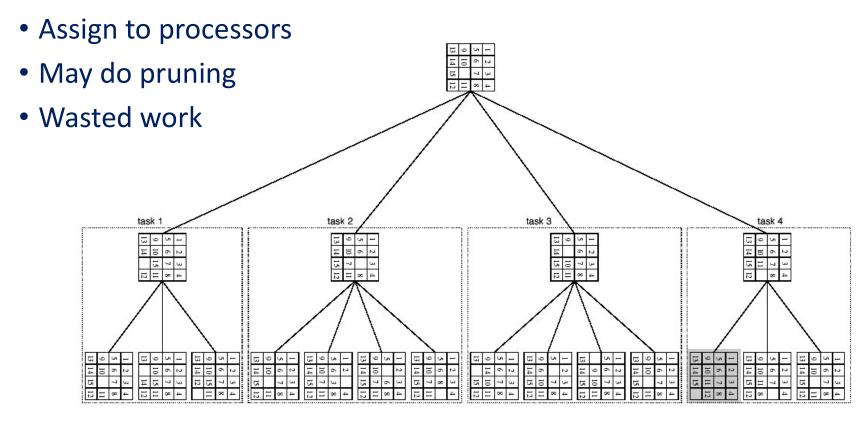
Sequential search across space of solutions

(b)

May involve some heuristics

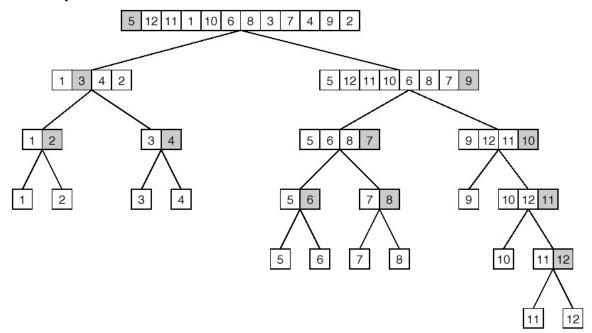
Parallelizing the 15-Puzzle Problem

• Enumerate move choices at each stage



Divide-and-Conquer Parallelism

- Break problem up in orderly manner into smaller, more manageable chunks and solve
- Quicksort example



Dense Matrix Algorithms

- Great deal of activity in algorithms and software for solving linear algebra problems
 - Solution of linear systems (Ax = b)
 - Least-squares solution of over- or under-determined systems (min | |Ax-b| |)
 - Computation of eigenvalues and eigenvectors ($Ax = \lambda x$)
 - Driven by numerical problem solving in scientific computation
- Solutions involves various forms of matrix computations
- Focus on high-performance matrix algorithms
 - Key insight is to maximize computation to communication

Solving a System of Linear Equations

• *Ax=b*:

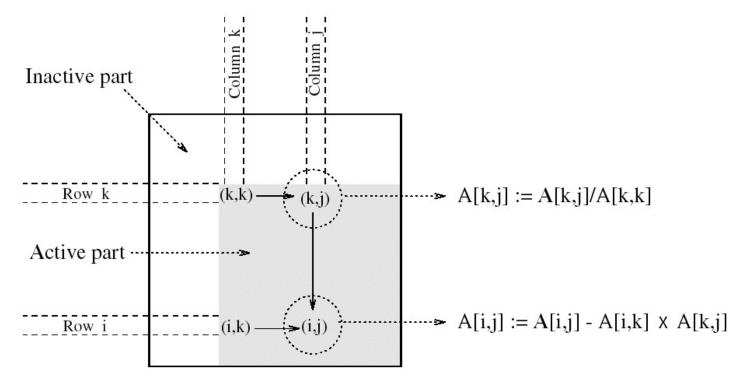
$$a_{0,0}x_0 + a_{0,1}x_1 + \dots + a_{0,n-1}x_{n-1} = b_0$$
 $a_{1,0}x_0 + a_{1,1}x_1 + \dots + a_{1,n-1}x_{n-1} = b_1$
 \dots
 $A_{n-1,0}x_0 + a_{n-1,1}x_1 + \dots + a_{n-1,n-1}x_{n-1} = b_{n-1}$

- Gaussian elimination (classic algorithm)
 - Forward elimination to Ux=y (U is upper triangular)
 - without or with partial pivoting
 - Back substitution to solve for x
 - Parallel algorithms based on partitioning of A

Sequential Gaussian Elimination

```
procedure GAUSSIAN ELIMINATION (A, b, y)
2.
     Begin
3.
        for k := 0 to n - 1 do /* Outer loop */
4.
         begin
5.
            for j := k + 1 to n - 1 do
6.
                A[k, j] := A[k, j]/A[k, k]; /* Division step */
7.
            y[k] := b[k]/A[k, k];
8.
            A[k, k] := 1;
9.
            for i := k + 1 to n - 1 do
10.
            begin
11.
                for j := k + 1 to n - 1 do
12
                    A[i, j] := A[i, j] - A[i, k] \times A[k, j]; /* Elimination step */
13.
                b[i] := b[i] - A[i, k] \times y[k];
14.
                A[i, k] := 0;
15.
            endfor:
                              /*Line9*/
16.
         endfor;
                              /*Line3*/
17. end GAUSSIAN ELIMINATION
```

Computation Step in Gaussian Elimination



$$5x + 3y = 22$$

 $8x + 2y = 13$
 $x = (22 - 3y) / 5$
 $8(22 - 3y) / 5 + 2y = 13$
 $x = (22 - 3y) / 5$
 $y = (13 - 176/5) / (24/5 + 2)$

Rowwise Partitioning on Eight Processes

P_0	1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
P ₁	0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
P ₂	0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
P ₃	0	0	0	(3,3)	(3,4)	(3,5)	(3,6)	(3,7)
P ₄	0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
P ₅	0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
P ₆	0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
P ₇	0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)

P_0	1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
P ₁	0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
P ₂	0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
P ₃	0	0	0	1	(3,4)	(3,5)	(3,6)	(3,7)
P ₄	0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
P ₅	0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
P ₆	0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
P ₇	0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)

(a) Computation:

(i) A[k,j] := A[k,j]/A[k,k] for k < j < j < j

(ii) A[k,k] := 1

(b) Communication:

One-to-all broadcast of row A[k,*]

Rowwise Partitioning on Eight Processes (cont'd)

P_0	1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
P ₁	0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
P ₂	0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
P ₃	0	0	0	1	(3,4)	(3,5)	(3,6)	(3,7)
P ₄	0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
P ₅	0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
P ₆	0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
P ₇	0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)

(c) Computation:

(i) $A[i,j] := A[i,j] - A[i,k] \times A[k,j]$ for k < i < n and k < j < n

(ii) A[i,k] := 0 for k < i < n

2D Mesh Partitioning on 64 Processes

1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
0	0	0	(3,3)	(3,4)	(3,5)		(3,7)
0	О	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
0	0	0	(5,3)	(5,4)		(5,6)	(5,7)
0	0	0	(6,3)	(6,4)	(6,5)	2.78	(6,7)
0	0	0	(7,3)	(7,4)			(7,7)

(a) Rowwise broadcast of A[i,k] for (k - 1) < i < n

1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
0	0	0	1	(3,4)	(3,5)	(3,6)	(3,7)
0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)

(c) Columnwise broadcast of A[k,j] for k < j < n</p>

1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
0	0	0	(3,3)	(3,4)	(3,5)	(3,6)	(3,7)
0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
О	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)

(b) A[k,j] := A[k,j]/A[k,k]for k < j < n

I	1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
Ì	О	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
İ	0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
İ	О	О	0	1	(3,4)	(3,5)	(3,6)	(3,7)
İ	О	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
İ	0	О	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
İ	0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
Ì	0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)

(d) $A[i,j] := A[i,j]-A[i,k] \times A[k,j]$ for k < i < n and k < j < n

Back Substitution to Find Solution

```
    procedure BACK_SUBSTITUTION (U, x, y)
    begin
    for k := n - 1 downto 0 do /* Main loop */
    begin
    x[k] := y[k];
    for i := k - 1 downto 0 do
    y[i] := y[i] - x[k] x U[i, k];
    endfor;
    end BACK_SUBSTITUTION
```

Dense Linear Algebra Libraries

- Basic Linear Algebra Subroutines (BLAS)
 - Level 1 (vector-vector): vectorization
 - Level 2 (matrix-vector): vectorization, parallelization
 - Level 3 (*matrix-matrix*): parallelization
- LINPACK (Fortran)
 - Linear equations and linear least-squares
- EISPACK (Fortran)
 - Eigenvalues and eigenvectors for matrix classes
- LAPACK (Fortran, C) (LINPACK + EISPACK)
 - Use BLAS internally
- Scalapack (Fortran, C, MPI) (scalable LAPACK)

http://www.netlib.org/

Sorting Algorithms

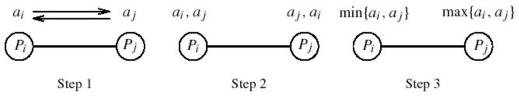
- Sorting is any process of arranging unordered collection into order
 - Permutation of a sequence of elements
- Internal versus external sorting
 - External sorting uses auxiliary storage
- Comparison-based
 - Compare pairs of elements and exchange
 - *O*(*n* log *n*)
- Noncomparison-based
 - Use known properties of elements
 - O(n)

Sorting on Parallel Computers

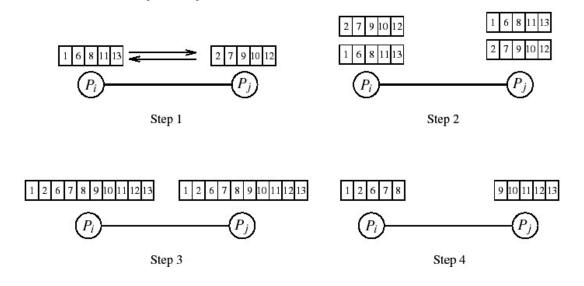
- Where are the elements stored?
 - Need to be distributed across processes
 - Sorted order will be with respect to process order
- How are comparisons performed?
 - One element per process
 - compare-exchange
 - interprocess communication will dominate execution time
 - More than one element per process
 - compare-split
- Sorting networks
 - Based on comparison network model
- Contrast with shared memory sorting algorithms

Single vs. Multi Element Comparision

One element per processor

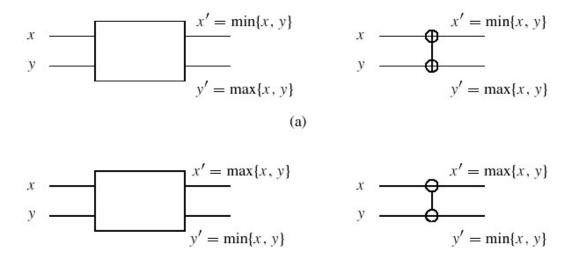


Multiple elements per processor



Sorting Networks

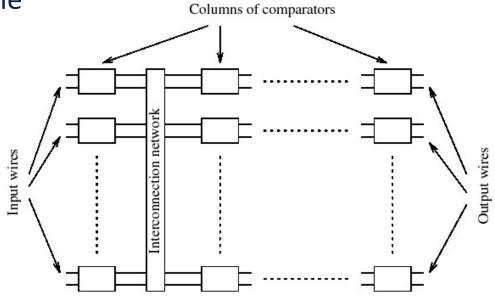
- Networks to sort n elements in less than O(n log n)
- Key component in network is a comparator
 - Increasing or decreasing comparator



Comparators are connected in parallel and permute elements

Sorting Network Design

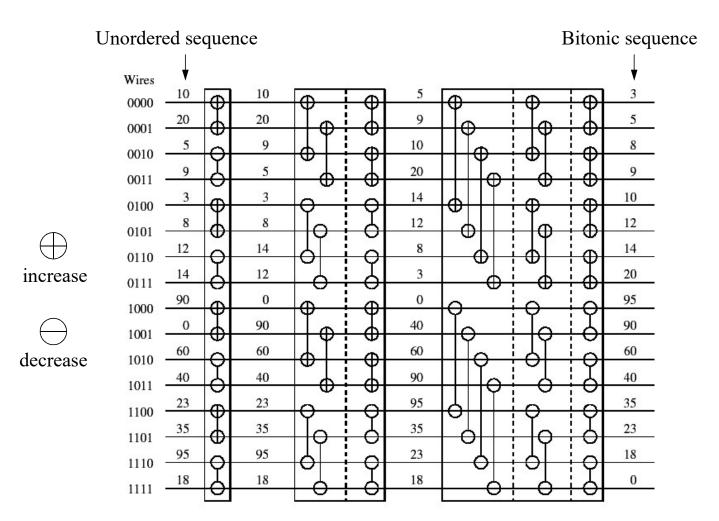
- Multiple comparator stages (# stages, # comparators)
- Connected together by interconnection network
- Output of last stage is the sorted list
- O(log²(n)) sorting time
- Convert any sorting network to sequential algorithm



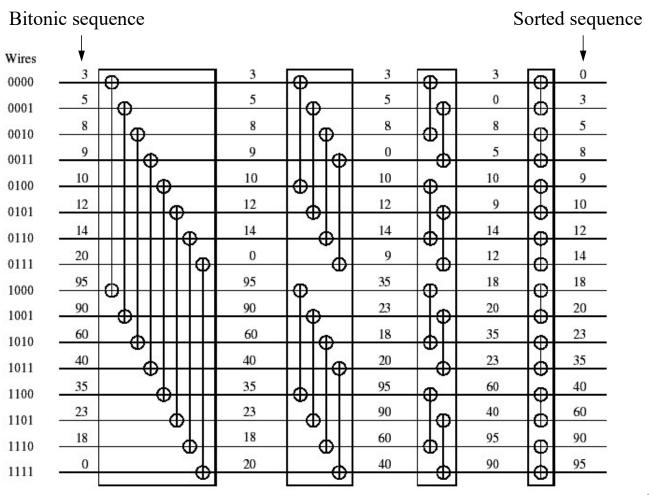
Bitonic Sort

- Create a bitonic sequence then sort the sequence
- Bitonic sequence
 - sequence of elements $\langle a_0, a_1, ..., a_{n-1} \rangle$
 - $\langle a_0, a_1, ..., a_i \rangle$ is monotonically increasing
 - $\langle a_i, a_{i+1}, ..., a_{n-1} \rangle$ is monotonically decreasing
- Sorting using bitonic splits is called bitonic merge
- Bitonic merge network is a network of comparators
 - Implement bitonic merge
- Bitonic sequence is formed from unordered sequence
 - Bitonic sort creates a bitonic sequence
 - Start with sequence of size two (default bitonic)

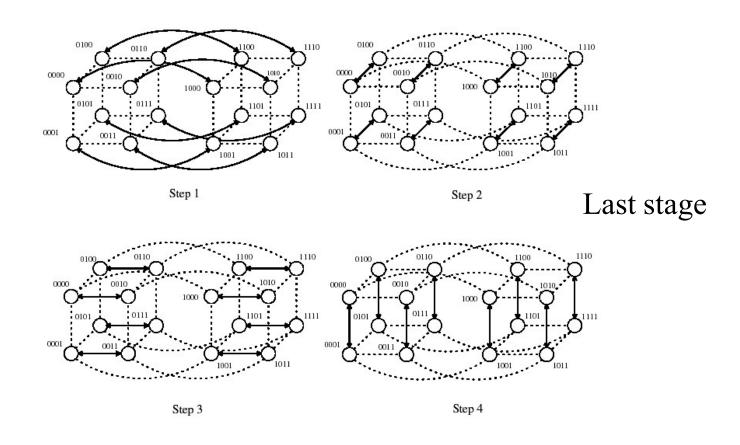
Bitonic Sort Network



Bitonic Merging Network



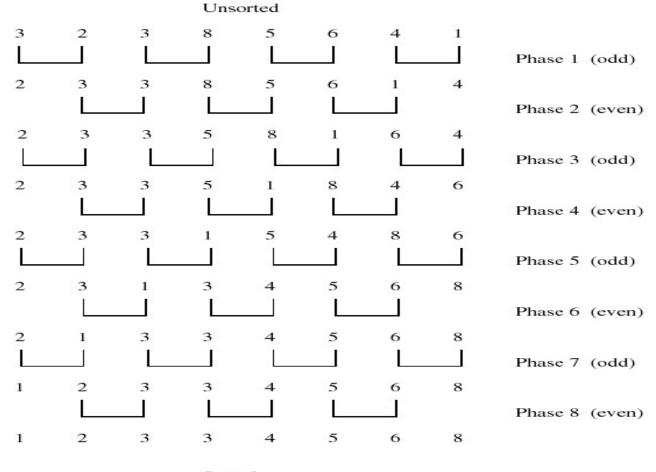
Parallel Bitonic Sort on a Hypercube



Bubble Sort and Variants

- We can easily parallelize sorting algorithms of $O(n^2)$
- Bubble sort compares and exchanges adjacent elements
 - O(n) each pass
 - O(n) passes
 - Available parallelism?
- Odd-even transposition sort
 - Compares and exchanges odd and even pairs
 - After n phases, elements are sorted
 - Available parallelism?

Odd-Even Transposition Sort



Sorted

Parallel Odd-Even Transposition Sort

```
procedure ODD-EVEN PAR(n)
    begin
3.
       id := process' s label
4.
       for i := 1 to n do
5.
        begin
           if i is odd then
6.
7.
               if id is odd then
8.
                  compare-exchange min(id + 1);
9.
               else
10.
                  compare-exchange max(id - 1);
11.
           if i is even then
12.
               if id is even then
13.
                  compare-exchange min(id + 1);
14.
               else
15.
                  compare-exchange max(id - 1);
16.
        end for
17. end ODD-EVEN PAR
```

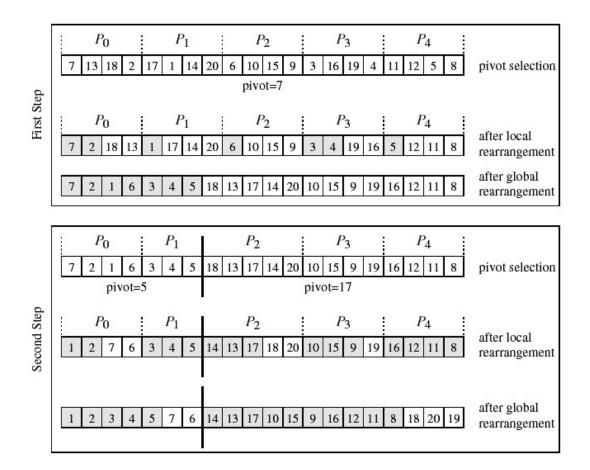
Quicksort

- Quicksort has average complexity of O(n log n)
- Divide-and-conquer algorithm
 - Divide into subsequences where every element in first is less than or equal to every element in the second
 - Pivot is used to split the sequence
 - Recursively apply quicksort algorithm to subsequences
- Available parallelism?

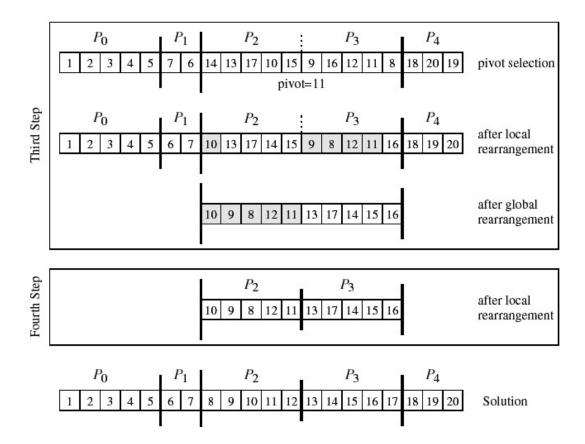
Sequential Quicksort

```
procedure QUICKSORT (A, q, r)
    begin
3.
        if q < r then
4.
        begin
5.
           x := A[q];
6.
           s := q;
7.
           for i := q + 1 to r do
8.
               if A[i] \le x then
9.
               begin
10.
                  s := s + 1;
11.
                  swap(A[s], A[i]);
12.
               end if
13.
           swap(A[q], A[s]);
           QUICKSORT (A, q, s);
14.
15.
           QUICKSORT (A, s + 1, r);
16.
        end if
17. end QUICKSORT
```

Parallel Shared Address Space Quicksort



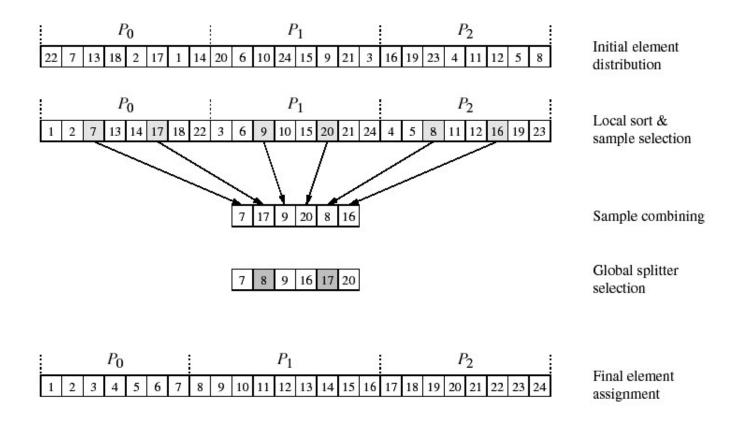
Parallel Shared Address Space Quicksort (cont'd)



Bucket Sort and Sample Sort

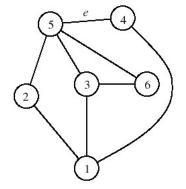
- Bucket sort is popular when elements (values) are uniformly distributed over an interval
 - Create *m* buckets and place elements in appropriate bucket
 - *O*(*n* log(*n*/*m*))
 - If m=n, can use value as index to achieve O(n) time
- Sample sort is used when uniformly distributed assumption is not true
 - Distributed to *m* buckets and sort each with quicksort
 - Draw sample of size s
 - Sort samples and choose *m-1* elements to be *splitters*
 - Split into *m* buckets and proceed with bucket sort

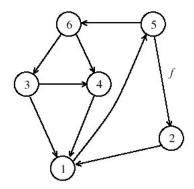
Parallel Sample Sort



Graph Algorithms

- Graph theory is important in computer science
- Many complex problems are graph problems
- G = (V, E)
 - *V*: finite set of points called vertices
 - *E*: finite set of edges
 - $e \in E$ is an pair (u,v), where $u,v \in V$
 - Unordered and ordered graphs



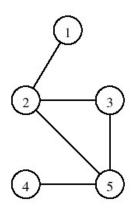


Graph Terminology

- Vertex adjacency if (u,v) is an edge
- Path from u to v if there is an edge sequence starting at u and ending at v
- If there exists a path, v is reachable from u
- A graph is connected if all pairs of vertices are connected by a path
- A weighted graph associates weights with each edge
- Adjacency matrix is an n x n array A such that
 - $A_{i,j} = 1$ if $(v_i, v_i) \in E$; 0 otherwise
 - Can be modified for weighted graphs (∞ is no edge)
 - Can be represented as adjacency lists

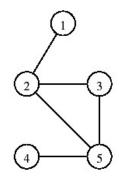
Graph Representations

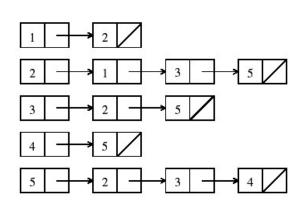
Adjacency matrix



$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

Adjacency list





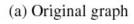
Minimum Spanning Tree

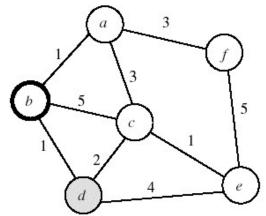
- A spanning tree of an undirected graph G is a subgraph of G that is a tree containing all the vertices of G
- The *minimum spanning tree* (MST) for a weighted undirected graph is a spanning tree with minimum weight
- Prim's algorithm can be used
 - Greedy algorithm
 - Selects an arbitrary starting vertex
 - Chooses new vertex guaranteed to be in MST
 - $O(n^2)$
 - Prim's algorithm is iterative

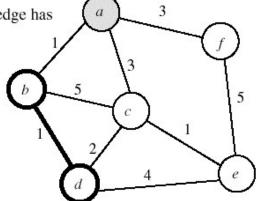
Prim's Minimum Spanning Tree Algorithm

```
procedure PRIM_MST(V, E, w, r)
1.
2.
       begin
3.
          VT := \{r\};
          d[r] := 0;
4.
          for all v \in (V - VT) do
5.
              if edge (r, v) exists set d[v] := w(r, v);
6.
7.
              else set d[v] := \infty;
8.
          while VT \neq V do
9.
          begin
10.
              find a vertex u such that d[u] := \min\{d[v]|v \in (V - VT)\};
11.
              VT := VT \cup \{u\};
              for all v \in (V - VT) do
12.
                                                                                            *
13.
                 d[v] := \min\{d[v], w(u, v)\};
          endwhile
14.
15.
       end PRIM MST
```

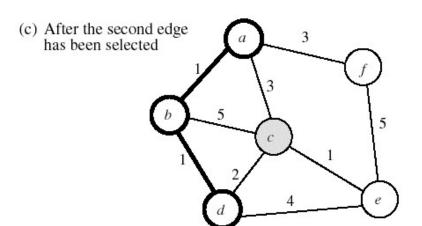
Example: Prim's MST Algorithm

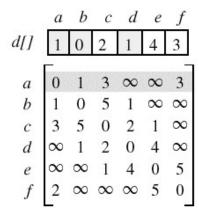


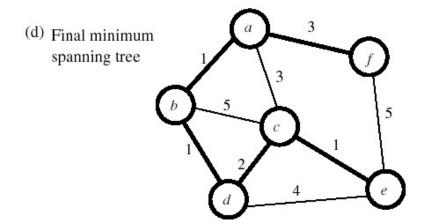




Example: Prim's MST Algorithm (cont'd)



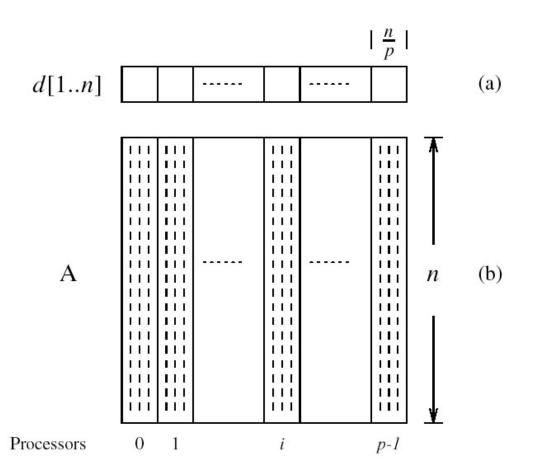




Parallel Formulation of Prim's Algorithm

- Difficult to perform different iterations of the while loop in parallel because d[v] may change each time
- Can parallelize each iteration though
- Partition vertices into p subsets V_i , i=0,...,p-1
- Each process P_i computes $d_i[u]=min\{d_i[v] \mid v \in (V-V_T) \cap V_i\}$
- Global minimum is obtained using all-to-one reduction
- New vertex is added to V_T and broadcast to all processes
- New values of d[v] are computed for local vertex
- $O(n^2/p) + O(n \log p)$ (computation + communication)

Partitioning in Prim's Algorithm



Single-Source Shortest Paths

- Find shortest path from a vertex v to all other vertices
- The shortest path in a weighted graph is the edge with the minimum weight
- Weights may represent time, cost, loss, or any other quantity that accumulates additively along a path
- Dijkstra's algorithm finds shortest paths from vertex s
 - Similar to Prim's MST algorithm
 - MST with vertex *v* as starting vertex
 - Incrementally finds shortest paths in greedy manner
 - Keep track of minimum cost to reach a vertex from s
 - O(n²)

Dijkstra's Single-Source Shortest Path

```
procedure DIJKSTRA SINGLE SOURCE SP(V, E, w, s)
2.
   begin
3.
   V_{\tau} := \{s\};
   for all v \in (V - V_T) do
4.
          if (s, v) exists set I[v] := w(s, v);
5.
6.
          else set l[v] :=∞;
7.
      while V_T \neq V do
8.
       begin
          find a vertex u such that I[u] := \min\{I[v] | v \in (V - V_T)\};
9.
10. VT := V_T \cup \{u\};
          for all v \in (V - V_T) do
11.
12.
             I[v] := \min\{I[v], I[u] + w(u, v)\};
13.
       endwhile
14. end DIJKSTRA SINGLE SOURCE SP
```

Parallel Formulation of Dijkstra's Algorithm

- Very similar to Prim's MST parallel formulation
- Use 1D block mapping as before
- All processes perform computation and communication similar to that performed in Prim's algorithm
- Parallel performance is the same
 - $O(n^2/p) + O(n \log p)$
 - Scalability
 - $O(n^2)$ is the sequential time
 - $O(n^2) / [O(n^2/p) + O(n \log p)]$

All Pairs Shortest Path

- Find the shortest path between all pairs of vertices
- Outcome is a $n \times n$ matrix $D = \{d_{i,j}\}$ such that $d_{i,j}$ is the cost of the shortest path from vertex v_i to vertex v_j
- Dijsktra's algorithm
 - Execute single-source algorithm on each process
 - $O(n^3)$
 - Source-partitioned formulation (use sequential algorithm)
 - Source-parallel formulation (use parallel algorithm)
- Floyd's algorithm
 - Builds up distance matrix from the bottom up

Floyd's All-Pairs Shortest Paths Algorithm

```
    procedure FLOYD_ALL_PAIRS_SP(A)
    begin
    D<sup>(0)</sup> = A;
    for k := 1 to n do
    for i := 1 to n do
    for j := 1 to n do
    d<sup>(k)</sup><sub>i,j</sub> := min d<sup>(k-1)</sup><sub>i,j</sub>, d<sup>(k-1)</sup><sub>i,k</sub> + d<sup>(k-1)</sup><sub>k,j</sub>;
    end FLOYD ALL PAIRS SP
```

Parallel Floyd's Algorithm

- 1. procedure FLOYD_ALL_PAIRS_PARALLEL (A)
- 2. begin
- 3. $D^{(0)} = A$;
- 4. **for** k := 1 **to** n **do**
- 5. **forall** $P_{i,i}$, where $i, j \le n$, **do in parallel**
- 6. $d^{(k)}_{i,j} := \min\{d^{(k-1)}_{i,j}, d^{(k-1)}_{i,k} + d^{(k-1)}_{k,j}\};$
- 7. end FLOYD_ALL_PAIRS_PARALLEL

Further Readings

- Introduction to Parallel Computing, by Ananth Grama, Anshul Gupta, George Karypis, & Vipin Kumar, Addison Wesley, 2nd Ed., 2003 http://www-users.cs.umn.edu/~karypis/parbook/
- The Boost Graph Library (BGL):

 http://www.boost.org/doc/libs/1 60 0/libs/graph/doc/index.html
- The Parallel Boost Graph Library (Parallel BGL):

 http://www.boost.org/doc/libs/1 60 0/libs/graph parallel/doc/html/index.html