
AMS 250: An Introduction toHigh Performance Computing
Overview

Shawfeng Dong
shaw@ucsc.edu
(831) 459-2725

Astronomy & Astrophysics
University of California, Santa Cruz

Outline
• Course Overview

• What is AMS 250
• What is expected of you
• What will you learn in AMS 250

• High Performance Computing (HPC)
• What is HPC
• What motivates HPC
• Trends that shape the field
• Large-scale problems and high-performance computing
• Parallel architecture types
• Scalable parallel computing and performance

2

What is AMS 250
• Successor to AMS 290B: An Introduction to Parallel Computing and Large Computational Fluid Dynamics Codes:

https://classes.soe.ucsc.edu/ams290b/Winter08/
• AMS 250 is a graduate course that introduces students to the modern world of cutting-edge supercomputing
• AMS 250 was inaugurated by Prof. Nic Brummell in Spring 2015:

https://courses.soe.ucsc.edu/courses/ams250/Spring15/01
• My lectures are also heavily influenced by the Parallel Computing course at University of Oregon:

http://ipcc.cs.uoregon.edu/curriculum.html
3

What is expected of you
• Fledgling Computational Scientists
• Computer Scientists and Engineers can benefit from this course as well
• Have taken AMS 209: Foundation of Scientific Computing; or equivalenthttps://ams209-fall15-01.courses.soe.ucsc.edu/
• Reasonably proficient in any, preferably all, of the following languages:

• C/C++
• Modern Fortran
• Python, particularly NumPy
• Java

4

Course Web Sites
• Drupal Site:

https://ams250-spring16-01.courses.soe.ucsc.edu/

• Google Classroom:
http://classroom.google.com/c/OTgxNTk0NTg0
Sign in with your Google Apps for Education account (@ucsc.edu)
Join in with the code gqrbdy

5

Syllabus
• PART A: CONCEPTS

• Parallel Computer Architectures
• Parallel programming models
• Parallel Programming Patterns & Algorithms

• PART B: TOOLS
• Shared Memory Programming with OpenMP
• Distributed Memory Programming with MPI
• Debugging & Performance Optimization
• Analysis & Visualization

• PART C: Advanced Topics
• Manycore Computing (GPU & MIC)
• Parallel Math Libraries
• Parallel IO
• MapReduce

• PART D: CASE STUDIES
• N-Body Simulations
• BoxLib: a block-structured AMR framework

6

Course Materials
• Major reading materials are lectures notes and references therein
• Supplemental textbooks:

• Programming on Parallel Machines, Norm Matloff, UC Davis
Open Textbook: http://heather.cs.ucdavis.edu/parprocbook

• Structured Parallel Programming: Patterns for Efficient Computation, Michael McCool, Arch Robinson, James Reinders,Morgan Kaufmann, 2012
PDF: http://www.sciencedirect.com/science/book/9780124159938

• Designing and Building Parallel Programs, Ian Foster, Addison Wesley, 1995
http://www.mcs.anl.gov/~itf/dbpp/text/book.html

7

Course Materials
• Supplemental textbooks (cont’d):

• Optimizing HPC Applications with Intel Cluster Tools, Alexander Supalov, Andrey Semin, Michael Klemm, Christopher Dahnken, Apress, 2014
Free eBook: http://www.apress.com/9781430264965

• Introduction to Parallel Computing, Ananth Grama, Anshul Gupta, George Karypis, Vipin Kumar, Addison Wesley, 2nd Ed., 2003
http://www-users.cs.umn.edu/~karypis/parbook/

8

Grading Policy
• Homework (60%)

• 4 simple programming assignments to help you understand the course materials
• Homework will be assigned every 2 weeks on Tuesdays, starting from the 1st

week
• Homework will be due 2 weeks from the assignment date
• Homework will be submitted to Google Classroom site
• Penalty for late homework submission

• You are going to receive a maximum of 80% if late by less than 1 day
• 50% if late by more than a day

• Final Project (40%)
9

Parallel Programming Final Project
• Major programming project for the course

• Non-trivial parallel application
• Include performance analysis
• Use the Hyades cluster

• Project teams
• Up to 4 persons per team
• Try to balance skills

• Project dates
• Proposal due end of 4th week
• Project presentation during the final week
• Project report due at the end of the quarter

10

Hyades Cluster
• Funded by a $1 million NSF-MRI award in 2012
• 180 Compute Nodes
• 8 GPU Node
• 1 MIC Node
• 1 Analysis Node
• 146 TB of parallel scratch space
• https://pleiades.ucsc.edu/hyades/

11

What will you get out of AMS 250
• In-depth understanding of parallel computer design
• Knowledge of how to program parallel computer systems
• Understanding of pattern-based parallel programming
• Exposure to different forms parallel algorithms
• Practical experience using a parallel cluster
• Background on parallel performance modeling
• Techniques for debugging, performance analysis and tuning

12

What is High Performance Computing
• We mostly use the following terms interchangeably: • Parallel Computing• High Performance Computing• Supercomputing
• Parallel Computing is all about High Performance
• A parallel computer is a computer system that uses multiple processing elements simultaneously in a cooperative manner to solve a computational problem
• Parallel processing includes techniques and technologies that make it possible to compute in parallel• Hardware, networks, operating systems, parallel libraries, languages, compilers, algorithms, tools, …
• Parallel computing is an evolution of serial computing• Parallelism is natural• Computing problems differ in level / type of parallelism

13

Concurrency
• Consider multiple tasks to be executed in a computer
• Tasks are concurrent with respect to each if

• They can execute at the same time (concurrent execution)
• Implies that there are no dependencies between the tasks

• Dependencies
• If a task requires results produced by other tasks in order to execute correctly, the task’s execution is dependent
• If two tasks are dependent, they are not concurrent
• Some form of synchronization must be used to enforce (satisfy) dependencies

• Concurrency is fundamental to computer science
• Operating systems, databases, networking, …

14

Concurrency and Parallelism
• Concurrent is not the same as parallel! Why?
• Parallel execution

• Concurrent tasks actually execute at the same time
• Multiple (processing) resources have to be available

• Parallelism = concurrency + parallel hardware
• Both are required
• Find concurrent execution opportunities
• Develop application to execute in parallel
• Run application on parallel hardware

• Is a parallel application a concurrent application?
• Is a parallel application run with one processor parallel? Why or why not?

15

Parallelism
• There are granularities of parallelism (parallel execution) in programs

• Processes, threads, routines, statements, instructions, …
• Think about what are the software elements that execute concurrently

• These must be supported by hardware resources
• Processors, cores, … (execution of instructions)
• Memory, DMA, networks, … (other associated operations)
• All aspects of computer architecture offer opportunities for parallel hardware execution

• Concurrency is a necessary condition for parallelism
• Where can you find concurrency?
• How is concurrency expressed to exploit parallel systems?

16

Why use parallel processing?
• Two primary reasons (both performance related)• Faster time to solution (response time)• Solve bigger computing problems (in same amount of time)
• Other factors motivate parallel processing• Effective use of machine resources• Cost efficiencies• Overcoming memory constraints
• Serial machines have inherent limitations• Processor speed, memory bottlenecks, …
• Parallelism has become the mainstream of computing
• Performance is still the driving concern
• Parallelism = concurrency + parallel hardware = performance

17

Perspectives on Parallel Processing
• Parallel computer architecture• Hardware needed for parallel execution?• Computer system design
• (Parallel) Operating system• How to manage systems aspects in a parallel computer
• Parallel programming• Libraries (low-level, high-level)• Languages• Software development environments
• Parallel algorithms
• Parallel performance evaluation
• Parallel tools• Performance, debugging, analytics, visualization, …

18

Why study parallel computing today?
• Computing architecture• Innovations often drive to novel programming models
• Technological convergence• The “killer micro” is ubiquitous• Laptops and supercomputers are fundamentally similar!• Trends cause diverse approaches to converge
• Technological trends make parallel computing inevitable• Multi-core processors are here to stay!• Practically every computing system is operating in parallel
• Understand fundamental principles and design tradeoffs• Programming, systems support, communication, memory, …• Performance
• Parallelism is the mainstream and future of computing

19

Inevitability of Parallel Computing
• Application demands• Insatiable need for computing cycles
• Technology trends• Processor and memory
• Architecture trends
• Economics
• Current trends:• Today’s microprocessors have multiprocessor support• Servers and workstations available as multiprocessors• Tomorrow’s microprocessors are multiprocessors• Multi-core is here to stay and #cores/processor is growing• Accelerators (GPUs, gaming systems)

20

Application Characteristics
• Application performance demands hardware advances
• Hardware advances generate new applications
• New applications have greater performance demands

• Exponential increase in microprocessor performance
• Innovations in parallel architecture and integration

• Range of performance requirements
• System performance must also improve as a whole
• Performance requirements demand computer engineering
• Costs addressed through technology advancements

21

applications performance

hardware

Broad Parallel Architecture Issues
• Resource allocation

• How many processing elements?
• How powerful are the elements?
• How much memory?

• Data access, communication, and synchronization
• How do the elements cooperate and communicate?
• How are data transmitted between processors?
• What are the abstractions and primitives for cooperation?

• Performance and scalability
• How does it all translate into performance?
• How does it scale?

22

Moore’s Law

23

“The complexity for minimum component costs has increased at a rate of roughly a factor of two per year. Certainly over the short term this rate can be expected to continue, if not to increase. Over the longer term, the rate of increase is a bit more uncertain, although there is no reason to believe it will not remain nearly constant for at least 10 years.”

Gordon E Moore, Intel CofounderElectronics, 35th anniversary issue, 1965

“The number of transistors than can be cheaply placed on integrated circuit board will double every two years.”

1975 revision

≈ Chip performance doubles every 18 months

24

• Slowing down since 2012 at 22nm feature width
• Another revision to a rate of doubling every two and a half years?

Leveraging Moore’s Law
• More transistors = more parallelism opportunities
• Microprocessors

• Implicit parallelism
• pipelining
• multiple functional units
• superscalar

• Explicit parallelism
• SIMD instructions
• long instruction works

25

What’s Driving Parallel Computing Architecture?

26
von Neumann bottleneck!(memory wall)

• Memory density is doubling every three years
• Processor logic (computation) is doubling every two years
• Memory are gradually getting more expensive, relative to computation
• Can we double concurrency without doubling memory?

Source: David Turek, IBM

Cost of Computation vs. Memory

Source: IBM

Memory Wall

27

What’s Driving Parallel Computing Architecture?

28

What’s Driving Parallel Computing Architecture?

29

Power Density Growth

30

Power Wall
• Processing chip manufacturers had increased processor performance by increasing CPU clock frequency
• Until the chips got too hot!

P is dynamic power consumed by a CPU, C is capacitance, V is voltage, f is frequency
• Then they add more and more cores to increase performance

• Keep clock frequency same or reduced
• Keep lid on power requirements

31

What does the Technology Enable?
• Continued exponential increase in computational power
Simulation is becoming third pillar of science, complementing theory and experiment

• Continued exponential increase in experimental data
Techniques and technology in data analysis, visualization, analytics, networking, and collaboration tools are becoming essential in all data rich scientific applications

32

• Traditional scientific and engineering method:
(1) Do theory or paper design
(2) Perform experiments or build system

• Limitations:
 Too difficult—build large wind tunnels
 Too expensive—build a throw-away passenger jet
 Too slow—wait for climate or galactic evolution
 Too dangerous—weapons, drug design, climate experimentation

• Computational Science and Engineering (CSE) paradigm:
(3) Use computers to simulate and analyze the phenomenon
 Based on known physical laws and efficient numerical methods
 Analyze simulation results with computational tools and methods beyond what is possible experimentally

Simulation

Theory Experiment

Third Pillar of Science

33

• Scientific data sets are growing exponentially
• Ability to generate data is exceeding our ability to store and analyze
• Simulation systems and some observational devices grow in capability with Moore’s Law

• Petabyte (PB) data sets will soon be common:
• Climate modeling: estimate of the next IPCC (Intergovernmental Panel on Climate Change) data is in 10s of petabytes
• Genome: JGI (Joint Genome Institute) alone will have .5 petabyte of data this year and double each year
• Particle physics: LHC (Large Hadron Collider) is projected to produce 16 petabytes of data per year
• Astrophysics: LSST (Large Synoptic Survey Telescope) will produce 15 terabytes of raw scientific image data per night (via 3.2 Gigapixel camera)

Data-Driven Science

34

• Science
• Weather prediction, Global climate modeling
• Biology: genomics, protein folding, drug design, etc
• Astrophysical modeling
• Computational Chemistry
• Computational Material Sciences and Nanosciences• Engineering
• Semiconductor design
• Earthquake and structural modeling
• Computation fluid dynamics (aircraft design)
• Combustion (engine design)
• Crash simulation• Business
• Financial and economic modeling
• Transaction processing, web services and search engines• Defense
• Nuclear weapons
• Cryptography

Particularly Challenging Problems

35

• Problem is to compute:
f(latitude, longitude, elevation, time)  “weather” =

(temperature, pressure, humidity, wind velocity)
• Approach:

• Discretize the domain - a measurement point every 10 km (0.1 deg)?
• Devise an algorithm to predict weather at time t+dt given t

• Importance:
• Predict major events, e.g., El Nino, hurricanes
• Evaluate global warming scenarios

Ref: http://www.epm.ornl.gov/chammp/chammp.html

Example: Climate Modeling

36

• State of the art models require integration of atmosphere, ocean, clouds, sea-ice, land models, plus possibly carbon cycle, geochemistry and more
• One piece is modeling the fluid flow in the atmosphere by solving the Navier-Stokes equations

• Takes roughly 100 flops per grid point with 1-minute timestep
• # points = Area/resolution * #height_levels = 4*pi*(6000km/10km)2 * 1000 ~ 5 x 109

37

Example: Climate Modeling

• Computational requirements:
– Speed: ~ 5 x 109 x 100 flops  5 x 1011 flops/timestep (min)
– To match real-time, need 5 x 1011 flops in 60 seconds  8 Gflop/s
– Weather prediction (7 days in 24 hours)  56 Gflop/s
– Climate prediction (50 years in 30 days)  4.8 Tflop/s
– To use in policy negotiations (50 years in 12 hours)  288 Tflop/s
– Data:

• Per timestep (min): 5 x 109 (points) x 8 bytes (double precision) x 5 (variables)  200 GB
• Per sim hour: 200 GB x 60 (mins)  12 Terabytes
• Per climate prediction: 12 TB x 50 (years) x 365 x 24  5 Exabytes

• To double the grid resolution, computation is 8x to 16x !!

38

Example: Climate Modeling

Effect of resolution:

Ref: P. Duffy et al, LLNL 39

Example: Climate Modeling

Effect of resolution:

Ref: NOAA GFDL 40

Example: Climate Modeling

Classifying Parallel Systems – Flynn’s Taxonomy
• Distinguishes multi-processor computer architectures along the two independent dimensions

• Instruction and Data
• Each dimension can have one state: Single or Multiple

• SISD: Single Instruction, Single Data
• Serial (non-parallel) machine

• SIMD: Single Instruction, Multiple Data
• Processor arrays and vector machines
• SIMT (T: threads) for GPUs

• MISD: Multiple Instruction, Single Data (weird)
• MIMD: Multiple Instruction, Multiple Data

• Most common parallel computer systems
• SPMD & MPMD (P: program)

41

Parallel Architecture Types
• Instruction-Level Parallelism

• Parallelism captured in instruction processing
• Vector processors

• Operations on multiple data stored in vector registers
• Shared-memory Multiprocessor (SMP)

• Multiple processors sharing memory
• Symmetric Multiprocessor (SMP)

• Multicomputer
• Multiple computer connect via network
• Distributed-memory cluster

• Massively Parallel Processor (MPP)
42

Phases of Supercomputing (Parallel) Architecture
• Phase 1 (1950s): sequential instruction execution
• Phase 2 (1960s): sequential instruction issue

• Pipeline execution, reservations stations
• Instruction Level Parallelism (ILP)

• Phase 3 (1970s): vector processors
• Pipelined arithmetic units
• Registers, multi-bank (parallel) memory systems

• Phase 4 (1980s): SIMD and SMPs
• Phase 5 (1990s): MPPs and clusters

• Communicating sequential processors
• Phase 6 (>2000): many cores, accelerators, scale, …

43

Fastest Computers in History

44

ENIAC
• 1946
• 1st electronic general-purposecomputer
• Vacuum tube circuitry
• Could make a 10-digit by 10-digit multiplication in 2800 μs
• ~ 357 single-precision FLOPS

(floating-point operations per second)
• https://en.wikipedia.org/wiki/ENIAC

45

UNIVAC I
• 1951
• 1st commercial computer in US
• Multiplication time was 2150 μs
• ~ 465 single-precision FLOPS
• Originally priced at $159,000
• Raised to $1.25 - $1.5 million
• https://en.wikipedia.org/wiki/UNIVAC_I

46

IBM 704
• 1954
• 1st mass-produced computer with floating-point arithmetic hardware
• Fortran & Lisp were 1st developed for IBM 704
• ~ 12 kFLOPS
• $2 million
• https://en.wikipedia.org/wiki/IBM_704

47

IBM 7090
• 1959
• Transistorized version of IBM 709 vacuum tube mainframe
• Double-precision floating-point instructions were introduced on IBM 7094
• ~ 100 kFLOPS
• $2.9 million
• https://en.wikipedia.org/wiki/IBM_7090

48

CDC 6600
• 1965
• 1st successful supercomputer
• Designed by Seymour Cray
• CPU, peripheral processors (PPs) and I/O operated in parallel
• 6600 CPU had multiple functional units that could operate in parallel
• ~ 3 MFLOPS
• $6 - $10 million
• https://en.wikipedia.org/wiki/CDC_6600

49

CDC 7600
• Fastest from 1969 to 1975
• Designed by Seymour Cray
• An architecture landmark

• Instruction pipeline
• Reduced Instruction Set Computer (RISC)

• ~ 10 MFLOPS on hand-compiled code
• 36 MFLOPS peak performance
• $5 million
• https://en.wikipedia.org/wiki/CDC_7600

50

Cray-1
• 1975
• One of the best known and most successful supercomputers in history
• 1st Cray design to use integrated circuits(ICs)
• 64-bit
• Vector processor, with 12 pipelined functional units
• ~ 160 MFLOPS, with 250 MFLOPS peak
• $8.86 million (1977)
• https://en.wikipedia.org/wiki/Cray-1

51

IBM PC
• IBM PC 5150 was released in 1981
• Intel 8088 CPU at 4.77 MHz
• 16 kB – 256 kB of memory
• ~ 50 kFLOPS with Intel 8087 floating-point coprocessor
• $1,565 ~ $3,000

௠௔௫
௠௔௫

52

Cray X-MP
• 1982
• Shared-memory parallel vector processor supercomputer
• 2 vector processors at 105 MHz
• 400 MFLOPS peak performance
• $15 million
• https://en.wikipedia.org/wiki/Cray_X-MP

53

Cray Y-MP
• 1988
• 2, 4, or 8 vector processors (with 2 functional units each) at 167 MHz
• 2.144 GFLOPS (measured) & 2.667 GLOPS (peak)
• $10 million
• https://en.wikipedia.org/wiki/Cray_Y-MP
• Cray C90 was a development of the Y-MP architecture, launched in 1991

54

Thinking Machines CM-1
• 1985
• SIMD supercomputer
• 65,536 simple single-bit processors
• Each CM-1 processor had its own 4 kilobits of RAM
• Connected in a hypercubic routing network
• ~ 1 GFLOPS
• $5 million
• https://en.wikipedia.org/wiki/Connection_Machine

55

Intel Paragon
• Massively parallel supercomputers by Intel in the 1990s
• Based on the Intel i860 RISC microprocessors
• Up to 2048 (later, up to 4000) i860s are connected in a 2D grid
• The prototype was the Touchstone Delta, funded by DARPA and installed at Caltech in 1990

• 16x32 mesh of i860 processors with a wormhole routing interconnection network
• 40 GFLOPS

56

Performance Expectations
• If each processor is rated at k MFLOPS and there are p processors, we should expect to see k*p MFLOPS performance?
• If it takes 100 seconds on 1 processor, it should take 10 seconds on 10 processors?
• Several causes affect performance

• Each must be understood separately
• But they interact with each other in complex ways

• solution to one problem may create another
• one problem may mask another

• Scaling (system, problem size) can change conditions
• Need to understand performance space

57

Scalability
• A program can scale up to use many processors

• What does that mean?
• How do you evaluate scalability?
• How do you evaluate scalability goodness?
• Comparative evaluation

• If double the number of processors, what to expect?
• Is scalability linear?

• Use parallel efficiency measure
• Is efficiency retained as problem size increases?

• Apply performance metrics
58

Top 500 Benchmarking Methodology
• http://top500.org/
• Ranks and details of 500 fastest supercomputers in the world
• HPL (High Performance Linpack) benchmark

• Solving dense linear system of equations (Ax = b)
• Data listed

• Rmax : maximal performance
• Rpeak : theoretical peak performance
• Nmax : problem size needed to achieve Rmax• N1/2 : problem size needed to achieve 1/2 of Rmax• Manufacturer and computer type
• Installation site, location, and year

• Updated twice a year at ISC and SC conferences
59

60

Tops of the Top 500

61

Top 500 Performance Development

62

TFLOPS

GFLOPS

PFLOPS

EFLOPS

doubling roughly every 14 months

63

64

#1: NUDT Tianhe-2 (Milky Way 2)
• 16,000 Compute Nodes, each with:

• Two Intel Ivy Bridge Xeon E5-2692v2 12C 2.2GHz
• Three Intel Xeon Phi 31S1P
• Memory: 64 GB host + 24 GB devices (3 x 8GB)
• 3.432 TFLOPS

• Front-End Node
• 4096 Galaxy FT-1500 CPUs (a SPARC derivative)
• Each FT-1500 has 16 cores, and runs @ 1.8 GHz

• Proprietary interconnect
• TH2 express, in a fat tree topology

• 12.4PB of global shared parallel storage
• # 1 since June 2013

65

Rpeak = 54.902 PFLOPS
Rmax = 33.863 PFLOPS
Power = 17.6 MW (24 MW)
Cost = 2.4 billion Yuan = $390m

#2: ORNL Titan

• 18,688 Compute Nodes (Cray XK7), each with:
• One AMD Opteron 6274 16-core CPU @ 2.2 GHz
• One NVIDIA Tesla K20X GPU
• Memory: 32 GB host + 6GB device

• 512 Service and I/O nodes
• Cray Gemini 3D Torus Interconnect
• 40 PB of Lustre storage, with an aggregate transfer rate of 1.4 TB/s
• 200 Cabinets
• #1 in November 2012; #2 since June 2013

66

4,352 ft2

Rpeak = 27.1 PFLOPS = 24.5 GPU + 2.6 CPU
Rmax = 17.590 PFLOPS
Power = 8.2 MW
Cost = $97 million

#3: LLNL Sequoia
• IBM Blue Gene/Q design
• 98,304 (1024/rack x 96 racks) Compute Cards, each with:

• 18-core PowerPC A2 processor @ 1.6 GHz, with 16 cores used for computing
• 16 GB of DDR3 memory

• 5-dimensional torus interconnect
• 55 PB of Lustre storage (with ZFS backend)
• #1 in June 2012; #3 since June 2013

67

Rpeak = 20.133 PFLOPS
Rmax = 17.173 PFLOPS
Power = 7.9 MW
Cost = $655.4 million 3,000 ft2

#4: RIKEN K Computer

• 82,944 (96/cabinets x 864 cabinets) Compute Nodes, each with:
• One 8-core SPARC64 VIIIfx @ 2.0 GHz
• 16 GB of memory

• 5,184 (6/cabinets x 864 cabinets) I/O Nodes
• 6-dimensional torus interconnect (Tofu)
• Fujitsu Exabyte File System (FEFS), based on Lustre
• #1 in June 2011; #4 since June 2013

68

Rpeak = 11.280 PFLOPSRmax = 10.510 PFLOPSPower = 12.6 MWCost > 100 billion Yen ($1.25b)

69

K Computer – Interconnect

12 links
70

Contemporary HPC Architectures

71

Date System Location Chip Interconnect Peak
(PF)

Power
(MW)

2009 Jaguar; Cray XT5 ORNL AMD Seastar2 2.3 7.0
2010 Tianhe-1A NSC Tianjin Intel + NVIDIA Proprietary 4.7 4.0
2010 Nebulae NSCS

Shenzhen
Intel + NVIDIA InfiniBand 2.9 2.6

2010 Tsubame 2 TiTech Intel + NVIDIA InfiniBand 2.4 1.4
2011 K Computer RIKEN/Kobe SPARC64 VIIIfx Tofu 10.5 12.7
2012 Titan; Cray XK7 ORNL AMD + NVIDIA Gemini 27 9
2012 Mira; BlueGeneQ ANL IBM SoC Proprietary 10 3.9
2012 Sequoia; BlueGeneQ LLNL IBM SoC Proprietary 20 7.9
2012 Blue Waters; Cray NCSA/UIUC AMD + (partial)

NVIDIA
Gemini 11.6

2013 Stampede TACC Intel + MIC InfiniBand 9.5 5
2013 Tianhe-2 NSCC-GZ

(Guangzhou)
Intel + MIC Proprietary 54 ~20

Graph 500
• http://www.graph500.org/
• Rating of supercomputers, focused on data intensive loads
• Graph 500 benchmark

• breadth-first search in a large undirected graph (model of Kronecker graph with average degree of 16)
• 6 problem classes defined by their input size:

• toy : 17 GB (226 vertices, scale 26; 1010 bytes, level 10)
• mini : 140 GB (229 vertices, scale 29; 1011 bytes, level 11)
• small : 1 TB (232 vertices, scale 32; 1013 bytes, level 13)
• medium : 17 TB (236 vertices, scale 36; 1014 bytes, level 14)
• large : 140 TB (239 vertices, scale 39; 1015 bytes, level 15)
• huge : 1.1 PB (242 vertices, scale 42; 1011 bytes, level 16)

• The main performance metric is GTEPS (109 traversed edges per second)
72

Graph 500 Top 10 (November 2015)

73

Top 500 Performance Development

http://www.netlib.org/utk/people/JackDongarra/SLIDES/korea-2011.pdf

74

Exascale Initiative
• Exascale machines are targeted for 2020
• What are the potential differences and problems?

75

76https://www.olcf.ornl.gov/wp-content/uploads/2013/01/OLCF_Requirements_TM_2013_Final.pdf

Major Changes to Software and Algorithms
• What were we concerned about before and now?
• Must rethink the design for exascale

• Data movement is expensive (Why?)
• Flops per second are cheap (Why?)

• Need to reduce communication and synchronization
• Need to develop fault-resilient algorithms
• How do with deal with massive parallelism?
• Software must adapt to the hardware (autotuning)

77

Scalable Parallel Computing
• Scalability in parallel architecture

• Processor numbers
• Memory architecture
• Interconnection network
• Avoid critical architecture bottlenecks

• Scalability in computational problem
• Problem size
• Computational algorithms

• Computation to memory access ratio
• Computation to communication ration

• Parallel programming models and tools
• Performance scalability

78

