
AMS 250: An Introduction toHigh Performance Computing
Overview

Shawfeng Dong
shaw@ucsc.edu
(831) 459-2725

Astronomy & Astrophysics
University of California, Santa Cruz

Outline
• Course Overview

• What is AMS 250
• What is expected of you
• What will you learn in AMS 250

• High Performance Computing (HPC)
• What is HPC
• What motivates HPC
• Trends that shape the field
• Large-scale problems and high-performance computing
• Parallel architecture types
• Scalable parallel computing and performance

2

What is AMS 250
• Successor to AMS 290B: An Introduction to Parallel Computing and Large Computational Fluid Dynamics Codes:

https://classes.soe.ucsc.edu/ams290b/Winter08/
• AMS 250 is a graduate course that introduces students to the modern world of cutting-edge supercomputing
• AMS 250 was inaugurated by Prof. Nic Brummell in Spring 2015:

https://courses.soe.ucsc.edu/courses/ams250/Spring15/01
• My lectures are also heavily influenced by the Parallel Computing course at University of Oregon:

http://ipcc.cs.uoregon.edu/curriculum.html
3

What is expected of you
• Fledgling Computational Scientists
• Computer Scientists and Engineers can benefit from this course as well
• Have taken AMS 209: Foundation of Scientific Computing; or equivalenthttps://ams209-fall15-01.courses.soe.ucsc.edu/
• Reasonably proficient in any, preferably all, of the following languages:

• C/C++
• Modern Fortran
• Python, particularly NumPy
• Java

4

Course Web Sites
• Drupal Site:

https://ams250-spring16-01.courses.soe.ucsc.edu/

• Google Classroom:
http://classroom.google.com/c/OTgxNTk0NTg0
Sign in with your Google Apps for Education account (@ucsc.edu)
Join in with the code gqrbdy

5

Syllabus
• PART A: CONCEPTS

• Parallel Computer Architectures
• Parallel programming models
• Parallel Programming Patterns & Algorithms

• PART B: TOOLS
• Shared Memory Programming with OpenMP
• Distributed Memory Programming with MPI
• Debugging & Performance Optimization
• Analysis & Visualization

• PART C: Advanced Topics
• Manycore Computing (GPU & MIC)
• Parallel Math Libraries
• Parallel IO
• MapReduce

• PART D: CASE STUDIES
• N-Body Simulations
• BoxLib: a block-structured AMR framework

6

Course Materials
• Major reading materials are lectures notes and references therein
• Supplemental textbooks:

• Programming on Parallel Machines, Norm Matloff, UC Davis
Open Textbook: http://heather.cs.ucdavis.edu/parprocbook

• Structured Parallel Programming: Patterns for Efficient Computation, Michael McCool, Arch Robinson, James Reinders,Morgan Kaufmann, 2012
PDF: http://www.sciencedirect.com/science/book/9780124159938

• Designing and Building Parallel Programs, Ian Foster, Addison Wesley, 1995
http://www.mcs.anl.gov/~itf/dbpp/text/book.html

7

Course Materials
• Supplemental textbooks (cont’d):

• Optimizing HPC Applications with Intel Cluster Tools, Alexander Supalov, Andrey Semin, Michael Klemm, Christopher Dahnken, Apress, 2014
Free eBook: http://www.apress.com/9781430264965

• Introduction to Parallel Computing, Ananth Grama, Anshul Gupta, George Karypis, Vipin Kumar, Addison Wesley, 2nd Ed., 2003
http://www-users.cs.umn.edu/~karypis/parbook/

8

Grading Policy
• Homework (60%)

• 4 simple programming assignments to help you understand the course materials
• Homework will be assigned every 2 weeks on Tuesdays, starting from the 1st

week
• Homework will be due 2 weeks from the assignment date
• Homework will be submitted to Google Classroom site
• Penalty for late homework submission

• You are going to receive a maximum of 80% if late by less than 1 day
• 50% if late by more than a day

• Final Project (40%)
9

Parallel Programming Final Project
• Major programming project for the course

• Non-trivial parallel application
• Include performance analysis
• Use the Hyades cluster

• Project teams
• Up to 4 persons per team
• Try to balance skills

• Project dates
• Proposal due end of 4th week
• Project presentation during the final week
• Project report due at the end of the quarter

10

Hyades Cluster
• Funded by a $1 million NSF-MRI award in 2012
• 180 Compute Nodes
• 8 GPU Node
• 1 MIC Node
• 1 Analysis Node
• 146 TB of parallel scratch space
• https://pleiades.ucsc.edu/hyades/

11

What will you get out of AMS 250
• In-depth understanding of parallel computer design
• Knowledge of how to program parallel computer systems
• Understanding of pattern-based parallel programming
• Exposure to different forms parallel algorithms
• Practical experience using a parallel cluster
• Background on parallel performance modeling
• Techniques for debugging, performance analysis and tuning

12

What is High Performance Computing
• We mostly use the following terms interchangeably: • Parallel Computing• High Performance Computing• Supercomputing
• Parallel Computing is all about High Performance
• A parallel computer is a computer system that uses multiple processing elements simultaneously in a cooperative manner to solve a computational problem
• Parallel processing includes techniques and technologies that make it possible to compute in parallel• Hardware, networks, operating systems, parallel libraries, languages, compilers, algorithms, tools, …
• Parallel computing is an evolution of serial computing• Parallelism is natural• Computing problems differ in level / type of parallelism

13

Concurrency
• Consider multiple tasks to be executed in a computer
• Tasks are concurrent with respect to each if

• They can execute at the same time (concurrent execution)
• Implies that there are no dependencies between the tasks

• Dependencies
• If a task requires results produced by other tasks in order to execute correctly, the task’s execution is dependent
• If two tasks are dependent, they are not concurrent
• Some form of synchronization must be used to enforce (satisfy) dependencies

• Concurrency is fundamental to computer science
• Operating systems, databases, networking, …

14

Concurrency and Parallelism
• Concurrent is not the same as parallel! Why?
• Parallel execution

• Concurrent tasks actually execute at the same time
• Multiple (processing) resources have to be available

• Parallelism = concurrency + parallel hardware
• Both are required
• Find concurrent execution opportunities
• Develop application to execute in parallel
• Run application on parallel hardware

• Is a parallel application a concurrent application?
• Is a parallel application run with one processor parallel? Why or why not?

15

Parallelism
• There are granularities of parallelism (parallel execution) in programs

• Processes, threads, routines, statements, instructions, …
• Think about what are the software elements that execute concurrently

• These must be supported by hardware resources
• Processors, cores, … (execution of instructions)
• Memory, DMA, networks, … (other associated operations)
• All aspects of computer architecture offer opportunities for parallel hardware execution

• Concurrency is a necessary condition for parallelism
• Where can you find concurrency?
• How is concurrency expressed to exploit parallel systems?

16

Why use parallel processing?
• Two primary reasons (both performance related)• Faster time to solution (response time)• Solve bigger computing problems (in same amount of time)
• Other factors motivate parallel processing• Effective use of machine resources• Cost efficiencies• Overcoming memory constraints
• Serial machines have inherent limitations• Processor speed, memory bottlenecks, …
• Parallelism has become the mainstream of computing
• Performance is still the driving concern
• Parallelism = concurrency + parallel hardware = performance

17

Perspectives on Parallel Processing
• Parallel computer architecture• Hardware needed for parallel execution?• Computer system design
• (Parallel) Operating system• How to manage systems aspects in a parallel computer
• Parallel programming• Libraries (low-level, high-level)• Languages• Software development environments
• Parallel algorithms
• Parallel performance evaluation
• Parallel tools• Performance, debugging, analytics, visualization, …

18

Why study parallel computing today?
• Computing architecture• Innovations often drive to novel programming models
• Technological convergence• The “killer micro” is ubiquitous• Laptops and supercomputers are fundamentally similar!• Trends cause diverse approaches to converge
• Technological trends make parallel computing inevitable• Multi-core processors are here to stay!• Practically every computing system is operating in parallel
• Understand fundamental principles and design tradeoffs• Programming, systems support, communication, memory, …• Performance
• Parallelism is the mainstream and future of computing

19

Inevitability of Parallel Computing
• Application demands• Insatiable need for computing cycles
• Technology trends• Processor and memory
• Architecture trends
• Economics
• Current trends:• Today’s microprocessors have multiprocessor support• Servers and workstations available as multiprocessors• Tomorrow’s microprocessors are multiprocessors• Multi-core is here to stay and #cores/processor is growing• Accelerators (GPUs, gaming systems)

20

Application Characteristics
• Application performance demands hardware advances
• Hardware advances generate new applications
• New applications have greater performance demands

• Exponential increase in microprocessor performance
• Innovations in parallel architecture and integration

• Range of performance requirements
• System performance must also improve as a whole
• Performance requirements demand computer engineering
• Costs addressed through technology advancements

21

applications performance

hardware

Broad Parallel Architecture Issues
• Resource allocation

• How many processing elements?
• How powerful are the elements?
• How much memory?

• Data access, communication, and synchronization
• How do the elements cooperate and communicate?
• How are data transmitted between processors?
• What are the abstractions and primitives for cooperation?

• Performance and scalability
• How does it all translate into performance?
• How does it scale?

22

Moore’s Law

23

“The complexity for minimum component costs has increased at a rate of roughly a factor of two per year. Certainly over the short term this rate can be expected to continue, if not to increase. Over the longer term, the rate of increase is a bit more uncertain, although there is no reason to believe it will not remain nearly constant for at least 10 years.”

Gordon E Moore, Intel CofounderElectronics, 35th anniversary issue, 1965

“The number of transistors than can be cheaply placed on integrated circuit board will double every two years.”

1975 revision

≈ Chip performance doubles every 18 months

24

• Slowing down since 2012 at 22nm feature width
• Another revision to a rate of doubling every two and a half years?

Leveraging Moore’s Law
• More transistors = more parallelism opportunities
• Microprocessors

• Implicit parallelism
• pipelining
• multiple functional units
• superscalar

• Explicit parallelism
• SIMD instructions
• long instruction works

25

What’s Driving Parallel Computing Architecture?

26
von Neumann bottleneck!(memory wall)

• Memory density is doubling every three years
• Processor logic (computation) is doubling every two years
• Memory are gradually getting more expensive, relative to computation
• Can we double concurrency without doubling memory?

Source: David Turek, IBM

Cost of Computation vs. Memory

Source: IBM

Memory Wall

27

What’s Driving Parallel Computing Architecture?

28

What’s Driving Parallel Computing Architecture?

29

Power Density Growth

30

Power Wall
• Processing chip manufacturers had increased processor performance by increasing CPU clock frequency
• Until the chips got too hot!

P is dynamic power consumed by a CPU, C is capacitance, V is voltage, f is frequency
• Then they add more and more cores to increase performance

• Keep clock frequency same or reduced
• Keep lid on power requirements

31

What does the Technology Enable?
• Continued exponential increase in computational power
Simulation is becoming third pillar of science, complementing theory and experiment

• Continued exponential increase in experimental data
Techniques and technology in data analysis, visualization, analytics, networking, and collaboration tools are becoming essential in all data rich scientific applications

32

• Traditional scientific and engineering method:
(1) Do theory or paper design
(2) Perform experiments or build system

• Limitations:
 Too difficult—build large wind tunnels
 Too expensive—build a throw-away passenger jet
 Too slow—wait for climate or galactic evolution
 Too dangerous—weapons, drug design, climate experimentation

• Computational Science and Engineering (CSE) paradigm:
(3) Use computers to simulate and analyze the phenomenon
 Based on known physical laws and efficient numerical methods
 Analyze simulation results with computational tools and methods beyond what is possible experimentally

Simulation

Theory Experiment

Third Pillar of Science

33

• Scientific data sets are growing exponentially
• Ability to generate data is exceeding our ability to store and analyze
• Simulation systems and some observational devices grow in capability with Moore’s Law

• Petabyte (PB) data sets will soon be common:
• Climate modeling: estimate of the next IPCC (Intergovernmental Panel on Climate Change) data is in 10s of petabytes
• Genome: JGI (Joint Genome Institute) alone will have .5 petabyte of data this year and double each year
• Particle physics: LHC (Large Hadron Collider) is projected to produce 16 petabytes of data per year
• Astrophysics: LSST (Large Synoptic Survey Telescope) will produce 15 terabytes of raw scientific image data per night (via 3.2 Gigapixel camera)

Data-Driven Science

34

• Science
• Weather prediction, Global climate modeling
• Biology: genomics, protein folding, drug design, etc
• Astrophysical modeling
• Computational Chemistry
• Computational Material Sciences and Nanosciences• Engineering
• Semiconductor design
• Earthquake and structural modeling
• Computation fluid dynamics (aircraft design)
• Combustion (engine design)
• Crash simulation• Business
• Financial and economic modeling
• Transaction processing, web services and search engines• Defense
• Nuclear weapons
• Cryptography

Particularly Challenging Problems

35

• Problem is to compute:
f(latitude, longitude, elevation, time) “weather” =

(temperature, pressure, humidity, wind velocity)
• Approach:

• Discretize the domain - a measurement point every 10 km (0.1 deg)?
• Devise an algorithm to predict weather at time t+dt given t

• Importance:
• Predict major events, e.g., El Nino, hurricanes
• Evaluate global warming scenarios

Ref: http://www.epm.ornl.gov/chammp/chammp.html

Example: Climate Modeling

36

• State of the art models require integration of atmosphere, ocean, clouds, sea-ice, land models, plus possibly carbon cycle, geochemistry and more
• One piece is modeling the fluid flow in the atmosphere by solving the Navier-Stokes equations

• Takes roughly 100 flops per grid point with 1-minute timestep
• # points = Area/resolution * #height_levels = 4*pi*(6000km/10km)2 * 1000 ~ 5 x 109

37

Example: Climate Modeling

• Computational requirements:
– Speed: ~ 5 x 109 x 100 flops 5 x 1011 flops/timestep (min)
– To match real-time, need 5 x 1011 flops in 60 seconds 8 Gflop/s
– Weather prediction (7 days in 24 hours) 56 Gflop/s
– Climate prediction (50 years in 30 days) 4.8 Tflop/s
– To use in policy negotiations (50 years in 12 hours) 288 Tflop/s
– Data:

• Per timestep (min): 5 x 109 (points) x 8 bytes (double precision) x 5 (variables) 200 GB
• Per sim hour: 200 GB x 60 (mins) 12 Terabytes
• Per climate prediction: 12 TB x 50 (years) x 365 x 24 5 Exabytes

• To double the grid resolution, computation is 8x to 16x !!

38

Example: Climate Modeling

Effect of resolution:

Ref: P. Duffy et al, LLNL 39

Example: Climate Modeling

Effect of resolution:

Ref: NOAA GFDL 40

Example: Climate Modeling

Classifying Parallel Systems – Flynn’s Taxonomy
• Distinguishes multi-processor computer architectures along the two independent dimensions

• Instruction and Data
• Each dimension can have one state: Single or Multiple

• SISD: Single Instruction, Single Data
• Serial (non-parallel) machine

• SIMD: Single Instruction, Multiple Data
• Processor arrays and vector machines
• SIMT (T: threads) for GPUs

• MISD: Multiple Instruction, Single Data (weird)
• MIMD: Multiple Instruction, Multiple Data

• Most common parallel computer systems
• SPMD & MPMD (P: program)

41

Parallel Architecture Types
• Instruction-Level Parallelism

• Parallelism captured in instruction processing
• Vector processors

• Operations on multiple data stored in vector registers
• Shared-memory Multiprocessor (SMP)

• Multiple processors sharing memory
• Symmetric Multiprocessor (SMP)

• Multicomputer
• Multiple computer connect via network
• Distributed-memory cluster

• Massively Parallel Processor (MPP)
42

Phases of Supercomputing (Parallel) Architecture
• Phase 1 (1950s): sequential instruction execution
• Phase 2 (1960s): sequential instruction issue

• Pipeline execution, reservations stations
• Instruction Level Parallelism (ILP)

• Phase 3 (1970s): vector processors
• Pipelined arithmetic units
• Registers, multi-bank (parallel) memory systems

• Phase 4 (1980s): SIMD and SMPs
• Phase 5 (1990s): MPPs and clusters

• Communicating sequential processors
• Phase 6 (>2000): many cores, accelerators, scale, …

43

Fastest Computers in History

44

ENIAC
• 1946
• 1st electronic general-purposecomputer
• Vacuum tube circuitry
• Could make a 10-digit by 10-digit multiplication in 2800 μs
• ~ 357 single-precision FLOPS

(floating-point operations per second)
• https://en.wikipedia.org/wiki/ENIAC

45

UNIVAC I
• 1951
• 1st commercial computer in US
• Multiplication time was 2150 μs
• ~ 465 single-precision FLOPS
• Originally priced at $159,000
• Raised to $1.25 - $1.5 million
• https://en.wikipedia.org/wiki/UNIVAC_I

46

IBM 704
• 1954
• 1st mass-produced computer with floating-point arithmetic hardware
• Fortran & Lisp were 1st developed for IBM 704
• ~ 12 kFLOPS
• $2 million
• https://en.wikipedia.org/wiki/IBM_704

47

IBM 7090
• 1959
• Transistorized version of IBM 709 vacuum tube mainframe
• Double-precision floating-point instructions were introduced on IBM 7094
• ~ 100 kFLOPS
• $2.9 million
• https://en.wikipedia.org/wiki/IBM_7090

48

CDC 6600
• 1965
• 1st successful supercomputer
• Designed by Seymour Cray
• CPU, peripheral processors (PPs) and I/O operated in parallel
• 6600 CPU had multiple functional units that could operate in parallel
• ~ 3 MFLOPS
• $6 - $10 million
• https://en.wikipedia.org/wiki/CDC_6600

49

CDC 7600
• Fastest from 1969 to 1975
• Designed by Seymour Cray
• An architecture landmark

• Instruction pipeline
• Reduced Instruction Set Computer (RISC)

• ~ 10 MFLOPS on hand-compiled code
• 36 MFLOPS peak performance
• $5 million
• https://en.wikipedia.org/wiki/CDC_7600

50

Cray-1
• 1975
• One of the best known and most successful supercomputers in history
• 1st Cray design to use integrated circuits(ICs)
• 64-bit
• Vector processor, with 12 pipelined functional units
• ~ 160 MFLOPS, with 250 MFLOPS peak
• $8.86 million (1977)
• https://en.wikipedia.org/wiki/Cray-1

51

IBM PC
• IBM PC 5150 was released in 1981
• Intel 8088 CPU at 4.77 MHz
• 16 kB – 256 kB of memory
• ~ 50 kFLOPS with Intel 8087 floating-point coprocessor
• $1,565 ~ $3,000

௫
௫

52

Cray X-MP
• 1982
• Shared-memory parallel vector processor supercomputer
• 2 vector processors at 105 MHz
• 400 MFLOPS peak performance
• $15 million
• https://en.wikipedia.org/wiki/Cray_X-MP

53

Cray Y-MP
• 1988
• 2, 4, or 8 vector processors (with 2 functional units each) at 167 MHz
• 2.144 GFLOPS (measured) & 2.667 GLOPS (peak)
• $10 million
• https://en.wikipedia.org/wiki/Cray_Y-MP
• Cray C90 was a development of the Y-MP architecture, launched in 1991

54

Thinking Machines CM-1
• 1985
• SIMD supercomputer
• 65,536 simple single-bit processors
• Each CM-1 processor had its own 4 kilobits of RAM
• Connected in a hypercubic routing network
• ~ 1 GFLOPS
• $5 million
• https://en.wikipedia.org/wiki/Connection_Machine

55

Intel Paragon
• Massively parallel supercomputers by Intel in the 1990s
• Based on the Intel i860 RISC microprocessors
• Up to 2048 (later, up to 4000) i860s are connected in a 2D grid
• The prototype was the Touchstone Delta, funded by DARPA and installed at Caltech in 1990

• 16x32 mesh of i860 processors with a wormhole routing interconnection network
• 40 GFLOPS

56

Performance Expectations
• If each processor is rated at k MFLOPS and there are p processors, we should expect to see k*p MFLOPS performance?
• If it takes 100 seconds on 1 processor, it should take 10 seconds on 10 processors?
• Several causes affect performance

• Each must be understood separately
• But they interact with each other in complex ways

• solution to one problem may create another
• one problem may mask another

• Scaling (system, problem size) can change conditions
• Need to understand performance space

57

Scalability
• A program can scale up to use many processors

• What does that mean?
• How do you evaluate scalability?
• How do you evaluate scalability goodness?
• Comparative evaluation

• If double the number of processors, what to expect?
• Is scalability linear?

• Use parallel efficiency measure
• Is efficiency retained as problem size increases?

• Apply performance metrics
58

Top 500 Benchmarking Methodology
• http://top500.org/
• Ranks and details of 500 fastest supercomputers in the world
• HPL (High Performance Linpack) benchmark

• Solving dense linear system of equations (Ax = b)
• Data listed

• Rmax : maximal performance
• Rpeak : theoretical peak performance
• Nmax : problem size needed to achieve Rmax• N1/2 : problem size needed to achieve 1/2 of Rmax• Manufacturer and computer type
• Installation site, location, and year

• Updated twice a year at ISC and SC conferences
59

60

Tops of the Top 500

61

Top 500 Performance Development

62

TFLOPS

GFLOPS

PFLOPS

EFLOPS

doubling roughly every 14 months

63

64

#1: NUDT Tianhe-2 (Milky Way 2)
• 16,000 Compute Nodes, each with:

• Two Intel Ivy Bridge Xeon E5-2692v2 12C 2.2GHz
• Three Intel Xeon Phi 31S1P
• Memory: 64 GB host + 24 GB devices (3 x 8GB)
• 3.432 TFLOPS

• Front-End Node
• 4096 Galaxy FT-1500 CPUs (a SPARC derivative)
• Each FT-1500 has 16 cores, and runs @ 1.8 GHz

• Proprietary interconnect
• TH2 express, in a fat tree topology

• 12.4PB of global shared parallel storage
• # 1 since June 2013

65

Rpeak = 54.902 PFLOPS
Rmax = 33.863 PFLOPS
Power = 17.6 MW (24 MW)
Cost = 2.4 billion Yuan = $390m

#2: ORNL Titan

• 18,688 Compute Nodes (Cray XK7), each with:
• One AMD Opteron 6274 16-core CPU @ 2.2 GHz
• One NVIDIA Tesla K20X GPU
• Memory: 32 GB host + 6GB device

• 512 Service and I/O nodes
• Cray Gemini 3D Torus Interconnect
• 40 PB of Lustre storage, with an aggregate transfer rate of 1.4 TB/s
• 200 Cabinets
• #1 in November 2012; #2 since June 2013

66

4,352 ft2

Rpeak = 27.1 PFLOPS = 24.5 GPU + 2.6 CPU
Rmax = 17.590 PFLOPS
Power = 8.2 MW
Cost = $97 million

#3: LLNL Sequoia
• IBM Blue Gene/Q design
• 98,304 (1024/rack x 96 racks) Compute Cards, each with:

• 18-core PowerPC A2 processor @ 1.6 GHz, with 16 cores used for computing
• 16 GB of DDR3 memory

• 5-dimensional torus interconnect
• 55 PB of Lustre storage (with ZFS backend)
• #1 in June 2012; #3 since June 2013

67

Rpeak = 20.133 PFLOPS
Rmax = 17.173 PFLOPS
Power = 7.9 MW
Cost = $655.4 million 3,000 ft2

#4: RIKEN K Computer

• 82,944 (96/cabinets x 864 cabinets) Compute Nodes, each with:
• One 8-core SPARC64 VIIIfx @ 2.0 GHz
• 16 GB of memory

• 5,184 (6/cabinets x 864 cabinets) I/O Nodes
• 6-dimensional torus interconnect (Tofu)
• Fujitsu Exabyte File System (FEFS), based on Lustre
• #1 in June 2011; #4 since June 2013

68

Rpeak = 11.280 PFLOPSRmax = 10.510 PFLOPSPower = 12.6 MWCost > 100 billion Yen ($1.25b)

69

K Computer – Interconnect

12 links
70

Contemporary HPC Architectures

71

Date System Location Chip Interconnect Peak
(PF)

Power
(MW)

2009 Jaguar; Cray XT5 ORNL AMD Seastar2 2.3 7.0
2010 Tianhe-1A NSC Tianjin Intel + NVIDIA Proprietary 4.7 4.0
2010 Nebulae NSCS

Shenzhen
Intel + NVIDIA InfiniBand 2.9 2.6

2010 Tsubame 2 TiTech Intel + NVIDIA InfiniBand 2.4 1.4
2011 K Computer RIKEN/Kobe SPARC64 VIIIfx Tofu 10.5 12.7
2012 Titan; Cray XK7 ORNL AMD + NVIDIA Gemini 27 9
2012 Mira; BlueGeneQ ANL IBM SoC Proprietary 10 3.9
2012 Sequoia; BlueGeneQ LLNL IBM SoC Proprietary 20 7.9
2012 Blue Waters; Cray NCSA/UIUC AMD + (partial)

NVIDIA
Gemini 11.6

2013 Stampede TACC Intel + MIC InfiniBand 9.5 5
2013 Tianhe-2 NSCC-GZ

(Guangzhou)
Intel + MIC Proprietary 54 ~20

Graph 500
• http://www.graph500.org/
• Rating of supercomputers, focused on data intensive loads
• Graph 500 benchmark

• breadth-first search in a large undirected graph (model of Kronecker graph with average degree of 16)
• 6 problem classes defined by their input size:

• toy : 17 GB (226 vertices, scale 26; 1010 bytes, level 10)
• mini : 140 GB (229 vertices, scale 29; 1011 bytes, level 11)
• small : 1 TB (232 vertices, scale 32; 1013 bytes, level 13)
• medium : 17 TB (236 vertices, scale 36; 1014 bytes, level 14)
• large : 140 TB (239 vertices, scale 39; 1015 bytes, level 15)
• huge : 1.1 PB (242 vertices, scale 42; 1011 bytes, level 16)

• The main performance metric is GTEPS (109 traversed edges per second)
72

Graph 500 Top 10 (November 2015)

73

Top 500 Performance Development

http://www.netlib.org/utk/people/JackDongarra/SLIDES/korea-2011.pdf

74

Exascale Initiative
• Exascale machines are targeted for 2020
• What are the potential differences and problems?

75

76https://www.olcf.ornl.gov/wp-content/uploads/2013/01/OLCF_Requirements_TM_2013_Final.pdf

Major Changes to Software and Algorithms
• What were we concerned about before and now?
• Must rethink the design for exascale

• Data movement is expensive (Why?)
• Flops per second are cheap (Why?)

• Need to reduce communication and synchronization
• Need to develop fault-resilient algorithms
• How do with deal with massive parallelism?
• Software must adapt to the hardware (autotuning)

77

Scalable Parallel Computing
• Scalability in parallel architecture

• Processor numbers
• Memory architecture
• Interconnection network
• Avoid critical architecture bottlenecks

• Scalability in computational problem
• Problem size
• Computational algorithms

• Computation to memory access ratio
• Computation to communication ration

• Parallel programming models and tools
• Performance scalability

78

