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This project is a review of the spatial Dirichlet process (SDP) developed by Gelfand et al. (2005).
I will first discuss how to model using the SDP, then examine properties of the model through a
data analysis.

1 Spatial Dirichlet Process Modeling

To denote realizations from point-referenced spatial data, we use {y(s) : s ∈ S}, S ⊂ Rd, where d is
the dimension of S. We observe data only at a subset of all possible points in S, s(n) = (s1, ..., sn) .
Typically, this type of data is modeled by a Gaussian process (GP). However, the assumption that
the data arises from a GP is often a restriction. we may want to allow deviation from a Gaussian
random field. An SDP prior can be put on the random field and have a Gaussian process as the
baseline distribution. Required for the model are replicates at each point. That is we need the full
dataset to consist of a collection of vectors yt = (y(s1), ..., y(sn)), t = 1, , , .T . Note that the points
si can be a pair of latitudes and longitudes.

We can construct the model as follows:

yt | θt, β, τ
2 ind.∼ Nn(θt + 1nβ, τ

2In), t=1,...,T

θt | G(n) i.i.d.∼ G(n), t=1,...,T

G(n) | α, σ2, φ ∼ DP( α,G
(n)
0 Nn(0n, σ

2Hn(φ)) )

β, τ2 ∼ N(m, s2)× IGamma(aτ2 = 2, bτ2)
α ∼ Gamma(aα, bα)
σ2 ∼ IGamma(bσ2 = 2, bσ2)
φ ∼ Uniform(0, bφ)

where Hn(φ) is a covariance function, for example, the exponential covariance function with decay
parameter φ. (i.e. (Hn(φ))ij = exp {−φ ‖si − sj‖}.)

Here, θt are the location-specific mean deviations from a grand mean β across the n spatial lo-
cations. Notice that clustering can result among the θt’s. This may be useful when our θt’s are
indexed by time and we want to learn how the observations are clustered in time. Also notice
that if we replaced the prior for the θ the baseline distribution used, we get a Gaussian process.

And as α → ∞, θt become i.i.d. G
(n)
0 conditional on the hyperparameters. We assume yt to be

independent and multivariate normal with no correlation. That is, the covariance is τ2In. The yt’s
are simply modeled as a mixture of multivariate normals.

1https://github.com/luiarthur/bnp_hw/project/bnp_spatialDP
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1.1 Prior Specification

The overall mean β modeled with a normal prior. In modeling maximum temperatures, it is ap-
propriate to use a reasonably informative prior. In the following data analysis, a prior mean of
30 and a prior variance of 5 were used. Gelfand et al. (2005) suggests for priors for σ2 and τ2

Inverse-Gamma priors with parameters (2, bσ2 and (2, bτ2) respectively. This corresponds to a prior
mean of bσ2 and bτ2 and infinite variance for the two parameters. For the data analysis below, I
used fixed variances as the model could not learn their values. With a T of only 20, it appears
that posterior learning could not occur. Gelfand et al. (2005) states that “practical experience...
suggests that there is posterior learning for [α] when sampling sizes are moderate to large”. Again
φ, which determines the rate of decay in the exponential decay function, was fixed. The prior for
α chosen such that the prior mean and variance were 1 and and 100 respectively.

Note that all the above priors except that for φ are conjugate. And yields the following complete
conditionals that can be used in a Gibbs sampler.

β | y,θ, τ2 ∼ N(
τ2m+s2

∑T
t=1

∑n
i=1(yit−θit)

τ2+Tns2
, s2τ2

τ2+Tns2
)

τ2 | y,θ, β ∼ IG(aτ2 + nT
2 , bτ2 +

∑T
t=1(µt−β1n)′(µt−β1n)

2 )

σ2 | θ∗, T ∗,y, σ2 ∼ IG(aσ2 + nT ∗

2 , bσ2 +
∑T∗

t=1 θ
∗′
t H

−1
n (φ)θ∗t

2 )

p(φ | θ∗, T ∗,y, σ2) ∝ [φ]|Hn(φ)|−T ∗/2 exp

(
−

∑T∗
t=1 θ

∗′
t H

−1
n (φ)θ∗t

2σ2

)
η | α,y ∼ Beta(α+ 1, T )

p(α | T ∗,y) = (ε) γ(α|aα + T ∗, bα − log(η))+

(1− ε) γ(α|aα + T ∗ − 1, bα − log(η))

where µt = yt − θt, η is an auxiliary variable introduced to make the prior for α conjugate, γ is the

gamma density function with the mean and rate parameterization, and ε =
aα + T ∗ − 1

n(bα − log(η)) + aα + T ∗ − 1
.

As θt has prior conjugacy, we can use the algorithm provided by Escobar and West (1995)

θt | yt, β, τ
2, σ2, φ ∼ Nn(τ−2Λ(yt − 1nβ),Λ)

q0 = |Λ|1/2

× exp
{

(yt−1nβ)′(In−τ−2Λ)(yt−1nβ)
2τ2

}
×[(2πτ2σ2)n/2|Hn(φ)|1/2]−1

where Λ = [τ−2In + σ−2H−1
n (φ)]−1.

1.2 Prediction at Unobserved Locations

Often, spatial modeling is used for prediction at unobserved locations (kriging). If we were able to
observe the replicates at new locations, we get the following full Bayesian model

T∏
t=1

[yt|θt, β, τ2]
T∏
t=1

[ỹt|θ̃t, β, τ2]
T∏
t=1

[(θt, θ̃t)|G(n+m)][G(n+m)|α, σ2, φ][τ2][α][σ2][φ]
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where ỹt and θ̃t are the unobserved replicate and it’s location specific mean at new locations
(yt(s̃1), ..., yt(s̃m)), for t = 1, ..., T . The second term can be integrated from the multivariate
normal likelihood (this is done by simply taking the corresponding terms in our likelihood away
from the model). Also, after marginalizing over G(n+m) we obtain the following expression(

T∏
t=1

[yt|θt, β, τ2]

)
[(θ1, θ̃1), ..., (θT , θ̃T )|α, σ2, φ][τ2][α][σ2][φ].

This expression can be further rewritten as(
T∏
t=1

[yt|θt, β, τ2]

)
[(θ∗, θ̃∗)|T ∗, σ2, φ][w, T ∗|α, σ2, φ][τ2][α][σ2][φ],

where the (θ∗, θ̃∗) are the unique θt which arise i.i.d. from G
(n+m)
0 . That is [(θ∗, θ̃∗)|T ∗, σ2, φ] =∏T ∗

j=1 Nn+m(θ∗j , θ̃
∗
j | 0n+m, σ2Hn+m(φ)). Finally, the model can be expressed as(

T∏
t=1

[yt|θt, β, τ2]

)(
T ∗∏
t=1

[θ̃∗j |θ
∗
j , σ

2, φ]

)(
T ∗∏
t=1

Nn(θ∗j | 0n, σ2Hn(φ))

)
[w, T ∗|α, σ2, φ][τ2][α][σ2][φ],

or equivalently(
T ∗∏
t=1

[θ̃∗j |θ
∗
j , σ

2, φ]

)(
T∏
t=1

[yt|θt, β, τ2]

)(
T ∗∏
t=1

Nn(θ∗j | 0n, σ2Hn(φ))

)
[w, T ∗|α, σ2, φ][τ2][α][σ2][φ].

Based on the expression above, the joint posterior [(θ∗, θ̃∗),w, T ∗, β, τ2, α, σ2, φ|data] can be de-
composed into (

T ∗∏
t=1

[θ̃∗j |θ
∗
j , σ

2, φ]

)
[ θ∗,w, T ∗, β, τ2, α, σ2, φ|data ].

The second term can be is the joint posterior in the SDP model. So, we can employ the following
algorithm to the MCMC outputs to obtain posterior draws for

∏T ∗

t=1[θ̃
∗
j |θ∗j , σ2, φ]: for each b =

1, ..., B, sample from [θ̃∗j |θ∗j , σ2, φ] for each j = 1, ..., T ∗. Notice that

θ̃∗j |θ
∗
j , σ

2, φ ∼ Nm(0m + S12S
−1
22 (θj − 0n), S11 − S12S

−1
22 S21)

where S = σ2Hn+m(φ), and the subsequent submatrices are defined as follows: S11 = σ2H1:m, 1:m(φ),
S12 = σ2H1:m, m+1:m+n(φ), S22 = σ2Hm+1:m+n, m+1:m+n(φ), S21 = σ2Hm+1:m+n, 1:m(φ).
To obtain posterior predictives at the new locations, we further draw values for (ỹ0b,y0b) from
Nm+n(βb1m+n + (θ̃0b, θ0b), τ

2Im+n).

2 Data Analysis

The data used for this study was gathered from The Atmospheric Science Data Center at NASA.
The script used to parse this dataset can be found at the referenced website 2. The data consists

2https://github.com/luiarthur/bnp_hw/tree/master/project/bnp_spatialDP/data/retrieve
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of daily averaged maximum temperatures at 10 meters for every July from 1985 to 2004, at 100
locations. (There was available every month average within the years and for more locations, but
to save on computation, only a subset of the data was retrieved and used.) Figure 1 shows the
average maximum daily temperatures at 100 locations in July 1989, with hotter regions in dark
red and cooler regions in dark blue. It can be seen and expected that in the northern regions and
along the coast, temperatures are lower; and in the southern and inland regions, temperatures are
higher. We fit the mentioned model to our data using the suggested prior specification (with the
exception of fixing the variances).
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Figure 1: Average maximum daily temperatures at various locations in the state of California in
1989. Warmer areas are dark red and cooler locations are dark blue.

We plot the mean of the data (mean temperatures at each location) side by side with the posterior
predictive mean in Figure 2. We see that the model smoothly interpolates the temperatures between
locations of known temperature. The model borrows information from closer locations and less
information from grid points far away. Far from the locations with data, the temperatures return
the the mean β.
The posterior predictive variance in Figure 3. The variance in the posterior predictive is large
(about 20 everywhere). I suspect this is due to the small amount of data (T = 20). With more
data, which is available this can be remedied. It should be noted that in C + + fitting the model
with 2500 MCMC iterations took 3 minutes. Fitting the model with more data can be easily
accommodated and quick. In predicting at new locations, matrix inversions can take a long time
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Figure 2: Left: Average of the average maximum daily temperatures at recorded locations in
California. Right: Predicted average maximum daily temperatures at various locations in the state
of California for a new year. Warmer areas are dark red and cooler locations are dark blue.

with large matrices, but this can be sped up by parallelization on larger systems.

3 Conclusions

The spatial Dirichlet process provides a flexible framework for modeling spatial data when station-
arity and Gaussianity is not desireable. Clustering can be induced (though not discussed here).
Posterior predictive for new locations can be done easily after fitting the model with only the loca-
tions in the data. So, predictions at new locations can be done in parallel after fitting the model. It
is worth noting that further information can be harvested from the data by modeling the temporal
structure. This topic has been explored using the SDP by Kottas et al. (2008).

References

Escobar, M. D., and West, M. (1995), “Bayesian density estimation and inference using mixtures,”
Journal of the american statistical association, 90, 577–588.

Gelfand, A. E., Kottas, A., and MacEachern, S. N. (2005), “Bayesian Nonparametric Spatial
Modeling With Dirichlet Process Mixing,” Journal of the American Statistical Association, 100,
1021–1035.

Kottas, A., Duan, J. A., and Gelfand, A. E. (2008), “Modeling disease incidence data with spatial
and spatio temporal Dirichlet process mixtures,” Biometrical Journal, 50, 29–42.

5



−124 −122 −120 −118 −116 −114

32
34

36
38

40
42

Data Variance

−124 −122 −120 −118 −116 −114

32
34

36
38

40
42

Posterior Predictive Variance

0

5

10

15

20

Figure 3: Left: Variance of the average maximum daily temperatures at recorded locations in
California. Right: Predicted variance of the average maximum daily temperatures at various
locations in the state of California for a new year. Areas with higher variance are dark red and
areas with lower variance would be in dark blue. Almost all locations have high variance.
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