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Stochastic processes: basic concepts and definitions

Consider a probability space (Ω,F , P ), where Ω is the sample space of the experiment, an
index set T , and a state space S. A stochastic process is a collection

X = {X(ω, t) : ω ∈ Ω, t ∈ T}

such that:
(1) For any n and any set of index points ti ∈ T , i = 1,...,n, (Xt1 , ..., Xtn) is an n-dimensional
random variable (random vector) defined on the probability space (Ω,F , P ) and taking values
in Sn ≡ S × ...× S. (Hence, for each fixed ti ∈ T , Xti(·) ≡ X(·, ti) : (Ω,F , P )→ S is a random
variable.)
(2) For any fixed ω ∈ Ω, Xω(·) ≡ X(ω, ·) : T → S is a function defined on T and taking values
in S, referred to as a sample (or sample path or realization) of the stochastic process X .

Conditions (1) and (2) indicate that a stochastic process X can be viewed either as a col-
lection of random variables {Xt : t ∈ T} or as a collection of random functions {Xω : ω ∈ Ω}.

Depending on the nature of T and S, we can have discrete-time or continuous-time stochas-
tic processes (countable or uncountable T , respectively) and discrete-state or continuous-state
stochastic processes (countable or uncountable S, respectively).
For the details below, assume that S is a (countable or uncountable) subset of Rd, d ≥ 1 (the
definitions can be extended to stochastic processes taking values in the complex plane).

Conditions (1) and (2) also indicate that for the study of a stochastic process both distri-
butional properties and properties of sample paths are important. With regard to the former,
the distribution function of the random vector (Xt1 , ..., Xtn),

Ft(x1, ..., xn) = Pr(Xt1 ≤ x1, ..., Xtn ≤ xn),

contains all the information for the specific index points t = (t1, ..., tn). The collection of all
these distribution functions Ft, as t ranges over all possible vectors of index points of any (fi-
nite) length n, is the set of finite-dimensional distributions (fdds) of the stochastic process X .

The Kolmogorov consistency conditions ensure existence of a stochastic process associ-
ated with a set of fdds. Formally, assume that for each (finite) n and for each set of index points
t = (t1, ..., tn) (in some index set T ), we define a distribution function Ft. If the collection of all
such distribution functions satisfies the Kolmogorov consistency conditions:
(a) F(t1,...,tn,tn+1)(x1, ..., xn, xn+1) → F(t1,...,tn)(x1, ..., xn) as xn+1 →∞, and
(b) For all n, x = (x1, ..., xn), t = (t1, ..., tn), and any permutation π = (π(1), ..., π(n)) of
{1, 2, ..., n}, Fπt(πx) = Ft(x), where πx = (xπ(1), ...., xπ(n)) and πt = (tπ(1), ...., tπ(n)),
then there exists a probability space (Ω,F , P ) and a collection X = {Xt : t ∈ T} of random
variables, defined on (Ω,F , P ), such that the set of Ft is the set of fdds of X .



It is important to note that fdds do not characterize a stochastic process, that is, they do not
always yield complete information about properties of sample paths. It is possible to have two
(or more) stochastic processes with the same set of fdds but with different sample paths. Such
processes are called versions of one another. (Under conditions on the stochastic process X ,
it can be shown that there exists a version Y of X with some specific property satisfied by its
sample paths, e.g., right-continuity or differentiability.)

Using the information provided by the set of fdds, we can define several useful functions for
a stochastic process X . (For all the definitions below, we assume that the required expectations
exist.) For any t ∈ T , the mean function of X is

µ(t) ≡ E(Xt) =

∫
x dFt(x).

For any ti, tj ∈ T , the covariance function is given by

c(ti, tj) ≡ Cov(Xti , Xtj ) = E(XtiXtj )− µ(ti)µ(tj)

and the correlation function by

r(ti, tj) ≡ Corr(Xti , Xtj ) =
Cov(Xti , Xtj )√

Var(Xti)Var(Xtj )
,

provided Var(Xti) > 0 and Var(Xtj ) > 0.
An important property of the autocovariance function is that it is a non-negative definite func-
tion, that is,

∑k
i=1

∑k
j=1 zizjc(ti, tj) ≥ 0, for all (finite) k and for any t1,...,tk ∈ T and real

constants z1,...,zk.
If c(ti, tj) = 0, for all ti, tj with ti 6= tj , then the stochastic process X is typically called a white
noise process. (If Xti and Xtj are independent for all ti, tj with ti 6= tj , X is sometimes called
a strictly white noise process.)
We say that X is a stochastic process with uncorrelated (orthogonal) increments if for any ti <
tj < tk < tl ∈ T , Cov(Xtj −Xti , Xtl −Xtk) = 0 (E((Xtj −Xti)(Xtl −Xtk)) = 0).
The process X has independent increments if for any ti < tj < tk < tl ∈ T , Xtj − Xti and
Xtl −Xtk are independent.


