AMS 241: Bayesian Nonparametric Methods (Fall 2015)

Homework set on Dirichlet process priors (due Tuesday October 20)

1. Assume a Dirichlet process (DP) prior, $DP(\alpha, G_0)$, for distributions G on \mathcal{X} . Show that for any (measurable) disjoint subsets B_1 and B_2 of \mathcal{X} , $Corr(G(B_1), G(B_2))$ is negative. Is the negative correlation for random probabilities induced by the DP prior a restriction? Discuss.

2. Simulation of Dirichlet process prior realizations

Consider a $DP(\alpha, G_0)$ prior over the space of distributions (equivalently c.d.f.s) G on \mathbb{R} , with $G_0 = N(0, 1)$. Use both Ferguson's original definition and Sethuraman's constructive definition to generate (multiple) prior realizations from the $DP(\alpha, N(0, 1))$ for fixed α with values ranging from *small* to *large*. In addition to prior c.d.f. realizations, obtain, for each value of α , the corresponding prior distribution the the mean functional $\mu(G) = \int t dG(t)$ and for the variance functional $\sigma^2(G) = \int t^2 dG(t) - \{\int t dG(t)\}^2$. (Note that, because G_0 has finite first and second moments, both of the random variables $\mu(G)$ and $\sigma^2(G)$ take finite values almost surely; see Section 4 in Ferguson, 1973.)

Finally, consider simulation under a mixture of DPs (MDP) prior, which extends the DP above by adding a gamma prior for α . Then, the MDP prior for G is defined such that, given α , $G \mid \alpha \sim DP(\alpha, N(0, 1))$. To simulate from the MDP, one can use either of the DP definitions given draws for α from its prior. You can work with 2-3 different gamma priors for α .

3. Posterior inference for one-sample problems using DP priors

Consider data = $\{y_1, ..., y_n\}$, and the following DP-based nonparametric model:

$$y_i \mid G \stackrel{\text{i.i.d.}}{\sim} G, \ i = 1, ..., n; \quad G \sim \text{DP}(\alpha, G_0)$$

with $G_0 = N(m, s^2)$ for fixed m, s^2 , and α . The objective here is to use simulated data to study posterior inference results for G under different prior choices for α and G_0 , different underlying distributions that generate the data, and different sample sizes. In particular, consider:

two data generating distributions: a N(0,1) distribution, and the mixture of normal distributions, 0.5N(-2.5, 0.5²) + 0.3N(0.5, 0.7²) + 0.2N(1.5, 2²), which yields a bimodal c.d.f. with *heavy* right tail;
sample sizes n = 20, n = 200, and n = 2000.

Discuss prior specification for the DP prior parameters m, s^2 , and α . For each of the 6 data sets corresponding to the combinations above, obtain posterior point and interval estimates for the c.d.f. G and discuss how well the model fits the data. Perform a prior sensitivity analysis to study the effect of m, s^2 , and α on the posterior estimates for G.

4. Posterior inference for count data using MDP priors

Consider again modeling a single distribution F, here for count responses, that is, the support for F is $\{0, 1, 2, ...\}$. The model for the data = $\{y_1, ..., y_n\}$ is given by

$$y_i \mid F \stackrel{\text{i.i.d.}}{\sim} F, \ i = 1, ..., n; \quad F \mid \alpha, \lambda \sim \text{DP}(\alpha, F_0(\cdot) = \text{Poisson}(\cdot \mid \lambda))$$

that is, we now have a DP prior for F, given random precision parameter α , and random mean λ for the centering Poisson distribution. Moreover, assume independent gamma priors for α and λ . Again, use simulated data under two different scenarios for the true data generating distribution:

• Poisson distribution with mean 5.

• Mixture of two Poisson distributions with means 3 and 11, and corresponding mixture weights given by 0.7 and 0.3.

For both cases, work with a sample of size n = 300 for the simulated data. Discuss specification for the prior hyperparameters of α and λ . Develop a posterior simulation method to explore the posterior distribution for α , and to estimate the posterior predictive distribution, $\Pr(Y = y \mid \text{data}), y = 0, 1, 2, ...$