
AMS 241: Bayesian Nonparametric Methods (Fall 2015)

Homework set on Dirichlet process priors
(due Tuesday October 20)

1. Assume a Dirichlet process (DP) prior, DP(α,G0), for distributions G on X . Show that for any (mea-
surable) disjoint subsets B1 and B2 of X , Corr(G(B1), G(B2)) is negative. Is the negative correlation for
random probabilities induced by the DP prior a restriction? Discuss.

2. Simulation of Dirichlet process prior realizations
Consider a DP(α,G0) prior over the space of distributions (equivalently c.d.f.s) G on R, with G0 =
N(0, 1). Use both Ferguson’s original definition and Sethuraman’s constructive definition to generate
(multiple) prior realizations from the DP(α,N(0, 1)) for fixed α with values ranging from small to large.
In addition to prior c.d.f. realizations, obtain, for each value of α, the corresponding prior distribution for
the mean functional µ(G) =

∫
tdG(t) and for the variance functional σ2(G) =

∫
t2dG(t)− {

∫
tdG(t)}2.

(Note that, because G0 has finite first and second moments, both of the random variables µ(G) and
σ2(G) take finite values almost surely; see Section 4 in Ferguson, 1973.)

Finally, consider simulation under a mixture of DPs (MDP) prior, which extends the DP above by adding
a gamma prior for α. Then, the MDP prior for G is defined such that, given α, G | α ∼ DP(α,N(0, 1)).
To simulate from the MDP, one can use either of the DP definitions given draws for α from its prior.
You can work with 2-3 different gamma priors for α.

3. Posterior inference for one-sample problems using DP priors
Consider data = {y1, ..., yn}, and the following DP-based nonparametric model:

yi | G
i.i.d.∼ G, i = 1, ..., n; G ∼ DP(α,G0)

with G0 = N(m, s2) for fixed m, s2, and α. The objective here is to use simulated data to study posterior
inference results for G under different prior choices for α and G0, different underlying distributions that
generate the data, and different sample sizes. In particular, consider:
• two data generating distributions: a N(0, 1) distribution, and the mixture of normal distributions,
0.5N(−2.5, 0.52) + 0.3N(0.5, 0.72) + 0.2N(1.5, 22), which yields a bimodal c.d.f. with heavy right tail;
• sample sizes n = 20, n = 200, and n = 2000.

Discuss prior specification for the DP prior parameters m, s2, and α. For each of the 6 data sets corre-
sponding to the combinations above, obtain posterior point and interval estimates for the c.d.f. G and
discuss how well the model fits the data. Perform a prior sensitivity analysis to study the effect of m, s2,
and α on the posterior estimates for G.

4. Posterior inference for count data using MDP priors
Consider again modeling a single distribution F , here for count responses, that is, the support for F is
{0, 1, 2, ...}. The model for the data = {y1, ..., yn} is given by

yi | F
i.i.d.∼ F, i = 1, ..., n; F | α, λ ∼ DP(α, F0(·) = Poisson(· | λ))

that is, we now have a DP prior for F , given random precision parameter α, and random mean λ for the
centering Poisson distribution. Moreover, assume independent gamma priors for α and λ. Again, use
simulated data under two different scenarios for the true data generating distribution:
• Poisson distribution with mean 5.
• Mixture of two Poisson distributions with means 3 and 11, and corresponding mixture weights given
by 0.7 and 0.3.

For both cases, work with a sample of size n = 300 for the simulated data. Discuss specification for
the prior hyperparameters of α and λ. Develop a posterior simulation method to explore the posterior
distribution for α, and to estimate the posterior predictive distribution, Pr(Y = y | data), y = 0, 1, 2, ...


