AMS 241: Bayesian Nonparametric Methods (Fall 2015)

Homework set on Dirichlet process priors
(due Tuesday October 20)

1. Assume a Dirichlet process (DP) prior, $\operatorname{DP}\left(\alpha, G_{0}\right)$, for distributions G on \mathcal{X}. Show that for any (measurable) disjoint subsets B_{1} and B_{2} of $\mathcal{X}, \operatorname{Corr}\left(G\left(B_{1}\right), G\left(B_{2}\right)\right)$ is negative. Is the negative correlation for random probabilities induced by the DP prior a restriction? Discuss.

2. Simulation of Dirichlet process prior realizations

Consider a $\operatorname{DP}\left(\alpha, G_{0}\right)$ prior over the space of distributions (equivalently c.d.f.s) G on \mathbb{R}, with $G_{0}=$ $\mathrm{N}(0,1)$. Use both Ferguson's original definition and Sethuraman's constructive definition to generate (multiple) prior realizations from the $\operatorname{DP}(\alpha, \mathrm{N}(0,1))$ for fixed α with values ranging from small to large. In addition to prior c.d.f. realizations, obtain, for each value of α, the corresponding prior distribution for the mean functional $\mu(G)=\int t \mathrm{~d} G(t)$ and for the variance functional $\sigma^{2}(G)=\int t^{2} \mathrm{~d} G(t)-\left\{\int t \mathrm{~d} G(t)\right\}^{2}$. (Note that, because G_{0} has finite first and second moments, both of the random variables $\mu(G)$ and $\sigma^{2}(G)$ take finite values almost surely; see Section 4 in Ferguson, 1973.)

Finally, consider simulation under a mixture of DPs (MDP) prior, which extends the DP above by adding a gamma prior for α. Then, the MDP prior for G is defined such that, given $\alpha, G \mid \alpha \sim \mathrm{DP}(\alpha, \mathrm{N}(0,1))$. To simulate from the MDP, one can use either of the DP definitions given draws for α from its prior. You can work with 2-3 different gamma priors for α.

3. Posterior inference for one-sample problems using DP priors

Consider data $=\left\{y_{1}, \ldots, y_{n}\right\}$, and the following DP-based nonparametric model:

$$
y_{i} \mid G \stackrel{\text { i.i.d. }}{\sim} G, i=1, \ldots, n ; \quad G \sim \operatorname{DP}\left(\alpha, G_{0}\right)
$$

with $G_{0}=\mathrm{N}\left(m, s^{2}\right)$ for fixed m, s^{2}, and α. The objective here is to use simulated data to study posterior inference results for G under different prior choices for α and G_{0}, different underlying distributions that generate the data, and different sample sizes. In particular, consider:

- two data generating distributions: a $\mathrm{N}(0,1)$ distribution, and the mixture of normal distributions, $0.5 \mathrm{~N}\left(-2.5,0.5^{2}\right)+0.3 \mathrm{~N}\left(0.5,0.7^{2}\right)+0.2 \mathrm{~N}\left(1.5,2^{2}\right)$, which yields a bimodal c.d.f. with heavy right tail;
- sample sizes $n=20, n=200$, and $n=2000$.

Discuss prior specification for the DP prior parameters m, s^{2}, and α. For each of the 6 data sets corresponding to the combinations above, obtain posterior point and interval estimates for the c.d.f. G and discuss how well the model fits the data. Perform a prior sensitivity analysis to study the effect of m, s^{2}, and α on the posterior estimates for G.

4. Posterior inference for count data using MDP priors

Consider again modeling a single distribution F, here for count responses, that is, the support for F is $\{0,1,2, \ldots\}$. The model for the data $=\left\{y_{1}, \ldots, y_{n}\right\}$ is given by

$$
y_{i}|F \stackrel{\text { i.i.d. }}{\sim} F, \quad i=1, \ldots, n ; \quad F| \alpha, \lambda \sim \operatorname{DP}\left(\alpha, F_{0}(\cdot)=\operatorname{Poisson}(\cdot \mid \lambda)\right)
$$

that is, we now have a DP prior for F, given random precision parameter α, and random mean λ for the centering Poisson distribution. Moreover, assume independent gamma priors for α and λ. Again, use simulated data under two different scenarios for the true data generating distribution:

- Poisson distribution with mean 5.
- Mixture of two Poisson distributions with means 3 and 11, and corresponding mixture weights given by 0.7 and 0.3 .

For both cases, work with a sample of size $n=300$ for the simulated data. Discuss specification for the prior hyperparameters of α and λ. Develop a posterior simulation method to explore the posterior distribution for α, and to estimate the posterior predictive distribution, $\operatorname{Pr}(Y=y \mid$ data $), y=0,1,2, \ldots$

