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Bayesian Nonparametric Modeling and Data Analysis:
An Introduction

Timothy E. Hanson, Adam J. Branscum and Wesley O. Johnson

Abstract
Statistical models are developed for the purpose of addressing scientific questions.
For each scientific question for which data are collected, the truth is sought by
developing statistical models that are useful in this regard. Despite the fact that re-
strictive parametric models have been shown to be extraordinarily effective in many
instances, there is and has been much scope for developing statistical inferences for
models that allow for greater flexibility. It would seem that just about any statisti-
cal modeling endeavor can be expanded and approached, at least conceptually, as a
nonparametric problem. The purpose of this chapter is to give a brief discussion of,
and introduction to, one of the two major approaches to the whole of statistics as it
were, Bayesian nonparametrics.

1. Introduction to Bayesian nonparametrics

The term ‘nonparametric’ is somewhat of a misnomer. It literally connotes the absence
of parameters. But it is usually the case that the goals of a data analysis include making
inferences about functionals of an unknown probability measure, F , which are them-
selves parameters, regardless of whether the class of probability measures under con-
sideration is quite broad (e.g., not indexed by parameters). Nonetheless, the spirit of the
term ‘nonparametric’ is to be free of restrictive, inappropriate, or unrealistic constraints
that are implied by particular parametric models. For example, it is often necessary to
consider models that allow for unspecified multimodality, asymmetry and nonlinearity.
This can be accomplished by considering a broad class of distributions and by making
statistical inferences within that context. Semiparametric modeling involves incorporat-
ing parametric and nonparametric components into a single model, an example being a
linear regression where the error distribution is allowed to be arbitrary subject to having
median zero. Hundreds of frequentist nonparametric and semiparametric papers have
been published. Classic methods were typically based on permutations and ranking,
while with increases in computational capabilities, jackknifing and resampling methods
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have more recently played a major role. Bayesian and frequentist nonparametric regres-
sion modeling, density estimation, and smoothing remains an active area of research.

Parametric modeling has dominated the Bayesian landscape for many years. In the
parametric setting, data are modeled according to a family of probability measures
{Fθ : θ ∈ Θ} with corresponding probability density functions (pdf) {p(·|θ): θ ∈ Θ}.
Scientific evidence for θ , which is obtained independently of the current data, is used
to construct a parametric “prior” pdf, p(dθ). As a first step, the posterior pdf of θ ,
p(dθ |data), is obtained. The next steps usually involve finding various posterior char-
acteristics such as medians or means, standard deviations, and probability intervals.
Prediction is accomplished by integrating the sampling pdf for the future observation
given the data against the posterior.

Nonparametric modeling begins with the specification of a broad class of models
for the data at hand. For example, consider a single sample of data from an unknown
distribution F . The goal is to make inferences about functionals of F , or possibly
the pdf corresponding to F . We could simply assert that F belongs to F , the class
of all continuous distributions on the real line. Alternatively, standard regression data,

{(yi, xi): i = 1, . . . , n}, can be modeled as yi |(xi, f, θ)
⊥∼ N(f (xi), θ), where f ∈ F∗,

a broad class of possible regression functions, and where θ ∈ (0,∞). Bayesian ap-
proaches to these problems require specifying probability measures, P(dF) and P∗(df )

on F and F∗, respectively, as well as a suitable parametric probability measure for θ . In
general, constructing suitable P’s on function spaces has been accomplished by a num-
ber of authors. Data analysis and applications involving these models were limited at
first due to analytical intractability. However, the last fifteen years has seen a dramatic
increase in nonparametric and semiparametric Bayesian modeling due to remarkable
improvements in computational techniques and capabilities.

Müller and Quintana (2004) noted that Bayesian nonparametric models are also
used to “robustify” parametric models and to perform sensitivity analyses. For ex-
ample, the above regression problem includes standard parametric linear regression
as a special case. Bayesian modeling can take specific account of this by construct-
ing a prior P∗(df ) that is centered on the parametric regression function. Along these
lines, Ibrahim and Kleinman (1998) embedded the family of zero-mean normal models
in a broader class of models for random effects in a generalized linear mixed model
framework, and Berger and Gugliemi (1999) developed general Bayesian nonparamet-
ric (BNP) methodology for embedding a family of parametric models in a broader class
for the purpose of determining the adequacy of parametric models.

In this chapter, we first discuss the basics of BNP modeling, e.g., the determination
of suitable P to be defined on F . This development begins with the Dirichlet process
(DP) (Ferguson, 1973), the mixture of DP’s (MDP) (Antoniak, 1974), the Dirichlet
process mixture (DPM) (Antoniak, 1974; Escobar, 1994), the Polya tree (PT) (Lavine,
1992, 1994), mixtures of PT’s (MPT) (Lavine, 1992) and the gamma process (GP)
(Kalbfleisch, 1978). Special emphasis is given to the DPM, MPT and GP models so
more details and/or illustrations are given for them. There are many other choices for P ,
but we mainly focus on these. This material is like root stock, from which it is possible
to grow more complex models and methods.
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After this development, we present a variety of illustrations starting with an applica-
tion to the independent two sample problem, and moving on to a variety of regression
problems. The regression scenarios considered include (i) approaches to linear regres-
sion modeling with an unknown error distribution, which are illustrated in a survival
analysis setting, (ii) nonlinear regression modeling with a parametric error distribu-
tion, which is illustrated on highly nonlinear data, and (iii) a fully nonparametric model
where the regression function and the error distribution are modeled nonparametrically.
Our presentation of nonparametric regression modeling of a mean function involves the
representation of the mean function as an infinite linear combination of known basis
functions (the coefficients are unknown). Bayesian modeling in this setting involves the
truncation of the infinite series, resulting in a regression function specified as a finite
linear combination. This can lead to a dimension varying linear model and requires
specifying a joint prior probability distribution on the corresponding basis coefficients
and (possibly) the number of basis functions to be included in the model. The resulting
linear model is essentially a highly flexible parametric model so that standard para-
metric methods are applicable in fitting the semiparametric model. For this particular
application, the fundamental background material is not needed.

We also discuss a variety of other modeling situations, but in less detail. We make
no attempt to present an exhaustive discussion of Bayesian nonparametrics since it is
possible to discuss all of inferential statistics from a BNP perspective, and this would
be beyond the scope of any single article. We shall instead discuss basic ideas, pro-
vide some simple illustrations, and give the reader a taste of recent progress in a few
important subfields.

The computing environment WinBUGS (Spiegelhalter et al., 2003) has made
Bayesian modeling available to the masses. In our discussion, we indicate how this
user-friendly software can be used to fit data to a number of non/semiparametric mod-
els. (Congdon 2001, Section 6.7) has examples of DPM and PT models fit in WinBUGS.

From here on we use the notation F to mean both a probability measure and its
corresponding cumulative distribution function (CDF) where we trust that the context
will make clear the distinction.

2. Probability measures on spaces of probability measures

In modeling a probability measure F as F ∼ P(dF), common choices of P are the DP,
MDP, DPM, PT, MPT and GP (a primary application of the GP is in the area of survival
analysis where the GP can be used to model the cumulative hazard function and thus
induces a distribution on F ). For many years, emphasis was placed on the DP due to
its mathematical tractability in simple situations, however the DP prior was criticized
because it places prior probability one on the class of discrete distributions. Although an
MDP model can place mass on absolutely continuous distributions, the use of MDP’s
in data analysis was limited due to the complexity resulting from a computational ex-
plosion associated with possibilities for ties (Antoniak, 1974; Berry and Christensen,
1979; Johnson and Christensen, 1989).
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The advent of modern BNP data analysis stems first from the development of Markov
chain Monte Carlo (MCMC) technology starting with Gelfand and Smith (1990) and
then from the observation by Escobar (1994) that these methods (in particular, Gibbs
sampling) could be applied to DPM’s after marginalization over the process F . There
have been many papers that used DPM’s for modeling and analyzing data since 1994
(for a small sampling see Dey et al., 1998). While PT priors have been discussed as early
as Freedman (1963), Fabius (1964) and Ferguson (1974), the natural starting point for
understanding their potential use in modeling data is Lavine (1992, 1994). The utility
of using MPT’s to generalize existing parametric families was illustrated by Berger and
Gugliemi (1999) and Hanson and Johnson (2002). The GP model was used to model
survival data in the context of the proportional hazards model by Kalbfleisch (1978)
and we present a particular implementation of this model here.

Other general probability models for P have been developed by Freedman (1963)
and Doksum (1974). In the particular area of survival analysis, there are a number of
nonparametric and semiparametric models beyond the GP that have been developed that
are based on modeling the hazard function and the cumulative hazard function (see, e.g.,
Dykstra and Laud, 1981; Ibrahim et al., 2001; Nieto-Barajas and Walker, 2002, 2004)
but we do not discuss these here. Review articles by Müller and Quintana (2004), Walker
et al. (1999), Gelfand (1999), Sinha and Dey (1997), the volume by Dey et al. (1998),
the monograph by Ghosh and Ramamoorthi (2003), and the article in this volume by
Choudhuri et al. (2004), all provide additional background and breadth beyond what we
present here.

2.1. The Dirichlet process

Ferguson (1973) introduced the DP as a means to specify a (prior) probability mea-
sure P(dF) on a probability measure F taking values in the space of all probability
measures, F , in the context of modeling statistical data. A random probability mea-
sure F is said to be a DP with parameter αF0 if for all finite measurable partitions
{Aj }Jj=1 of the sample space, the vector (F (A1), F (A2), . . . , F (AJ )) has a Dirichlet
distribution with parameter (αF0(A1), αF0(A2), . . . , αF0(AJ )). The parameter (αF0)

of a DP consists of a scalar precision parameter α > 0 and a completely known
base probability measure F0. The DP is centered at F0 in the sense that for any
measurable set B, E[F(B)] = F0(B). The parameter α is referred to as a preci-
sion parameter because the prior variance for the probability of any measurable set,
Var[F(B)] = F0(B)[1−F0(B)]

α+1 , is small for large α. These results follow from the fact that
F(B) ∼ Beta(αF0(B), αF0(B

c)). We write F |α, F0 ∼ DP(αF0).
A key conjugacy result holds for the DP. Consider the model

y1, y2, . . . , yn|F i.i.d.∼ F

F |α, F0 ∼ DP(αF0)

and define Y = (y1, y2, . . . , yn). Then the posterior distribution of F is F |Y ∼
DP(α∗F ∗

0 ) where α∗ = α + n and F ∗
0 = α

α+n
F0 + 1

α+n

∑n
i=1 δyi

; δy(·) denotes point
mass at y, e.g., δy(B) = 1, if y ∈ B, and zero otherwise. Hence the posterior mean of
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the CDF F(t) is given by

F̂ (t) = E
[
F(t)|Y ] = α

α + n
F0(t) + n

α + n
F̂n(t),

where F̂n(t) is the empirical distribution function based on (y1, . . . , yn). This is a com-
mon occurrence in Bayesian statistics that the estimate is a weighted average of the prior
mean of F and an empirical estimate, in this instance the nonparametric maximum like-
lihood estimate.

In addition to estimating F , inferences for functionals, T (F ), are of interest.
For instance, the mean functional is given by E(y|F) = ∫

y dF(y). Inferences for
T (F ) can be obtained using the approach of Gelfand and Kottas (2002) where {Fj :
j = 1, . . . , MC} are simulated from the posterior distribution F |Y and used to obtain
the corresponding Monte Carlo sample of T (F j )’s. We shall discuss this approach in
detail for the DPM model.

Predictive inference for a future observation is also straightforward. The predictive
distribution of a future observation yf where yf |Y , F ∼ F is F ∗

0 . This follows from the
generalized Polya urn representation for the marginal distribution of Y (Blackwell and
MacQueen, 1973).

There are two features of the DP that typically are viewed as its primary limitations.
As previously indicated, the support of the DP distribution is the set of all discrete distri-
butions (Ferguson, 1973; Blackwell, 1973). This can be visualized from the constructive
definition of F (Sethuraman, 1994):

F =
∞∑

j=1

Vjδθj
,

where with Wi
i.i.d.∼ Beta(1, α), the Vj ’s are defined as V1 = W1, . . . , Vj =

Wj

∏j−1
r=1(1 − Wr), . . . , and θj

i.i.d.∼ F0. This is often referred to as the “stick-breaking”
representation as the weights are defined in a way that the interval [0, 1] (the stick) is
successively broken up or partitioned into pieces starting with the interval [0, w1], and
then adding [w1, w1 + (1−w1)w2] etc. The lengths of each of the corresponding subin-
tervals are the weights in the Sethuraman representation of F . The second drawback
of the DP is that for any disjoint measurable sets B1 and B2, the correlation between
F(B1) and F(B2) is negative, which for (“small”) adjacent sets violates a belief that
these two probabilities should be positively correlated.

2.2. Mixtures of Dirichlet processes

Centering the DP on a fixed F0 may be appropriate for some applications but for the
majority of applied problems centering the DP on a family of parametric distributions is
preferable. The goal then is to embed a parametric family in the broad class of models F .

The MDP model is specified as:

y1, y2, . . . , yn|F i.i.d.∼ F

F |α, Fθ ∼ DP(αFθ )

θ ∼ p(dθ),
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where {Fθ : θ ∈ Θ} is a parametric family of probability models. The standard rep-
resentation for the MDP is F ∼ ∫

DP(αFθ )p(dθ). This representation makes it clear
that F is distributed as a literal mixture of DP’s. Antoniak (1974) presented theoreti-
cal results for the MDP model and also gave a number of applications. In particular,
Antoniak (1974) obtained the posterior pdf for θ , assuming absolutely continuous Fθ

with pdf p(·|θ), as:

p(dθ |Y) ∝ p(dθ)

k∏
i=1

p
(
y∗
i |θ)

,

where {y∗
i , i = 1, . . . , k � n} are the distinct yj ’s. Also, for given θ , F |Y, θ ∼

DP(α∗F ∗
θ ) where F ∗

θ = α
α+n

Fθ+ 1
α+n

∑n
i=1 δyi

. Hence, inferences for functionals T (F )

can be obtained by first sampling θj i.i.d.∼ p(dθ |Y), j = 1, 2, . . . , MC, then (partially)
sampling Fj |Y, θj from DP(α∗F ∗

θj ), and finally computing T (F j ).
The posterior mean E[F |Y ] = ∫

F ∗
θ p(dθ |Y) provides an estimate of F and can be

approximated by Monte Carlo integration, e.g.,

E[F |Y ] .= 1

MC

MC∑
j=1

F ∗
θj .

If p(dθ) is conjugate to p(y|θ), p(dθ |Y) is easily sampled. Otherwise, sampling from
p(dθ |Y) can be accomplished, for instance, using a Metropolis sampler (Tierney, 1994).

Briefly consider a BNP version of the classic empirical Bayes problem. Let yi |θi
ind∼

Fθi
, θi |G i.i.d.∼ G, G ∼ DP(αG0), i = 1, . . . , n. This model can be represented as

yi |F i.i.d.∼ F ≡ ∫
FθG(dθ), G ∼ DP(αG0). The definition of F here corresponds to the

definition of a DPM in the next subsection. Antoniak (1974) established in his Corol-
lary 3.1 that the posterior distribution of F |y (for a single y) can be represented as an
MDP, namely F |y ∼ ∫

DP((α + 1)(G0 + δθ ))p(dθ |y). Thus there is a connection be-
tween the MDP and the DPM models. But aside from that, computational complexities
arise using this model for the empirical Bayes problem as soon as one attempts to char-
acterize the full posterior distribution. From Corollary 3.2 of Antoniak (1974), and with
θ = (θ1, . . . , θn), we have F |Y ∼ ∫

DP((α +n)(wF0 + (1−w)
∑n

i=1 δθi
/n))p(dθ |Y),

w = α/(α + n). It is here where Berry and Christensen (1979) and Lo (1984) real-
ized how complicated the problem is due to the discreteness of the distribution of θ |Y .
A brute force approach to the problem must consider all possible combinations of ties
among the θi’s. The Monte Carlo approach of Escobar (1994) made it possible to actu-
ally analyze data modeled as a DPM.

2.3. Dirichlet process mixture models

The DPM model has been very popular for use in BNP inference. A standard parametric
model that strives to achieve flexibility is the finite mixture model

yi
i.i.d.∼

K∑
j=1

pjFθj
,
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where {Fθ : θ ∈ Θ} represents a standard parametric family, θj ∈ Θ for j = 1, . . . , K

are assumed to be distinct so the mixture is comprised of K distinct members of this
family. The fixed unknown mixing probabilities {pj , j = 1, . . . , K} add to one and
there are additional constraints that insure identifiability (Titterington et al., 1985).
Bayesian inference for this model is achieved by placing a prior distribution on K ,
{pj , j = 1, . . . , K}, and {θj , j = 1, . . . , K}. Such a model results in a varying dimen-
sional parameter space and consequently specialized computational techniques, such as
reversible jump MCMC (Green, 1995), are required.

The DPM model avoids such concerns as the data are modeled according to an infi-
nite mixture model which, using the Sethuraman (1994) representation, is given by

yi
i.i.d.∼

∞∑
j=1

VjFθj
,

where the Fθj
’s are parametric CDFs (the CDFs that would be used in a finite mixture

model) with Vj and θj defined as in the DP. Here the (implied) induced prior on the
θj ’s is that they are i.i.d. from the base measure (F0) of the DP. This representation of
the model makes clear that the DPM model is equivalent to selecting an infinite mixture
and where the DP prior induces the specified distribution on the weights and the θ ’s. So
while the DPM generalizes the Bayesian version of the finite mixture model above by
allowing for an infinite mixture, it does so at the expense of having a particular prior for
these inputs. With a small weight α selected for the DP, the DP places high probability
on a few nonnegligible components. In this instance, the DPM model effectively results
in a finite mixture model but where it is not necessary to specify the number of compo-
nents of the mixture in advance. The data are allowed to determine the likely number of
mixture components.

Alternatively, the DPM model is specified as

y1, y2, . . . , yn|F i.i.d.∼ F(·|G) =
∫

Fθ(·)G(dθ), G|α,G0 ∼ DP(αG0).

Because G is a random probability measure, F is a random probability measure. Note
that if Fθ is continuous, then F(·|G) is also continuous with probability one. Thus the
DPM model does not suffer the same fate as the DP in this regard.

An equivalent (and more commonly used) DPM model specification introduces la-
tent variables as discussed at the end of the previous section:

yi |θi
⊥∼ Fθi

θi |G i.i.d.∼ G

G|α,G0 ∼ DP(αG0).

Contributions related to fitting DPM models include the work of Escobar (1994),
MacEachern (1994), Escobar and West (1995), Bush and MacEachern (1996), Mac-
Eachern and Müller (1998), Walker and Damien (1998), MacEachern et al. (1999),
and Neal (2000). Contributions related to obtaining inferences for F and functionals
T (F ) for DPM models have been provided by Gelfand and Mukhopadhyay (1995),
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Mukhopadhyay and Gelfand (1997), Kleinman and Ibrahim (1998), Gelfand and Kottas
(2002), and Regazzini et al. (2002) among many others.

We now proceed to discuss details of fitting the basic DPM model and some of its
extensions since it is perhaps the single most important BNP model to date.

2.3.1. Fitting DPM models
A Monte Carlo approach to approximating the posterior distribution of T (F ) would
involve sampling the infinite-dimensional parameter G. Such an approach cannot be
implemented without introducing finite approximations. Escobar (1994) considered the
DPM model obtained after marginalizing the DP. This reduces the problem to sampling
only the finite-dimensional variables (θ1, . . . , θn) as will be seen below. Using the third
characterization of the DPM, Escobar obtained a numerical approximation to the poste-
rior of the vector θ = (θ1, . . . , θn) using Gibbs sampling, e.g., by iteratively sampling
θi |θ−i , yi where θ−i denotes the vector of all θj ’s excluding θi .

The marginalized DPM model is given by

yi |θi
⊥∼ Fθi

p(θ1, θ2, . . . , θn) = p(θ1)p(θ2|θ1)p(θ3|θ1, θ2) · · · p(θn|θ1:n−1),

where θ1:i−1 = (θ1, θ2, . . . , θi−1), i = 2, . . . , n, and dependence of the distribution for
θ on (α,G0) has been suppressed. The generalized Polya urn scheme (Blackwell and
MacQueen, 1973) is used to specify p(θ1, θ2, . . . , θn) as

θ1 ∼ G0

θi |θ1:i−1

{∼G0 with probability α
α+i−1 ,

= θj with probability 1
α+i−1 , j = 1, 2, . . . , i − 1.

This follows from the fact that, for an appropriate measurable set A, Pr(θi ∈
A|θ1:i−1) = E[G(A)|θ1:i−1]. For i = 1, we have E[G(A)] = G0(A). For i > 1,
since G|θ1:i−1 is an updated DP, we have

G(A)|θ1:i−1 ∼ Beta

(
αG0(A) +

i−1∑
j=1

δθj
(A), αG0

(
Ac

) +
i−1∑
j=1

δθj

(
Ac

))
.

Hence E[G(A)|θ1:i−1] = α
α+i−1G0(A) + 1

α+i−1

∑i−1
j=1 δθj

(A), which yields the above
result.

Combining the pdf for θi |θ1:i−1 with the contribution p(yi |θi) and because the latent
θj ’s are exchangeable, the full conditional for θi is:

(1)θi |θ−i , yi

 = θj with probability
p(yi |θj )

A(yi ) + ∑
j �=i p(yi |θj )

, j �= i,

∼p(dθi |yi) with probability A(yi)

A(yi )+∑
j �=i p(yi |θj )

,

where A(yi) = α
∫

p(yi |θ)G0(dθ) and p(dθi |yi) is the conditional pdf for θi given the
single observation yi based on a parametric model with likelihood contribution p(yi |θi)
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(the pdf corresponding to Fθi
) and prior distribution G0 on θi . Sampling these full condi-

tional distributions will be straightforward if p(yi |θi) and G0 are a conjugate pair so that
computing A(yi) and sampling p(dθi |yi) will be routine. Such models are referred to
as conjugate DPM models. Escobar and West (1995) considered a generalization of this
model with yi |µi, σ

2
i ∼ N(µi, σ

2
i ) and G0(dµ, dσ 2) = N(dµ|m, τσ 2)IG(dσ 2|a, b), a

normal/inverse gamma base measure.
Although fitting a conjugate DPM model using the Gibbs sampler above is straight-

forward, the Gibbs sampler will often exhibit slow convergence to the joint marginal
posterior, and once convergence is achieved, subsequent sampling of the θi’s may be
very inefficient, as discussed by Neal (2000). This is due to the discreteness of the DP.
The θ ’s will cluster at each iteration of the Gibbs sampler, namely there will be a vector
of distinct values of (θ1, . . . , θn), say φ = (φ1, . . . , φk) for k � n. The inefficiency
results from ignoring this fact in the Gibbs sampler described above.

MacEachern and Müller (1998) overcome this problem by using the following sam-
pling approach for conjugate DPM models. At a given iteration of the Gibbs sampler,
let the vector c = (c1, c2, . . . , cn) denote the cluster membership of yi so that ci = j if
θi = φj for i = 1, 2, . . . , n, and j = 1, . . . , k. The current state of the Markov chain
is (c, φ). The actual sampling is accomplished in two steps: (i) Sample θi as previously
described but only for the purpose of determining the cluster membership ci of each yi .
This involves the possibility of adding a new value of θ or sampling one of the current
values in the vector φ. If a new value is added, the vector φ is augmented to include
the new value and k → k + 1. It is also possible that in sampling a θi when the current
value of θi has only multiplicity one (e.g., ci = j ,

∑
l δj (cl) = 1), the new value will be

one of the θ−i values so that the vector φ must be redefined to accommodate its removal
from the collection and hence k → k − 1 in this instance. (ii) Then generate φj by
sampling from the posterior distribution of φj based on the parametric model with like-
lihood p(·|φj ) and prior G0 on φj where the posterior distribution is computed using
only the yi’s that belong to cluster j . With this approach, all the θi’s associated with a
given cluster will be updated to a new value simultaneously.

MacEachern and Müller (1998) and Neal (2000) developed and discussed methods
for sampling nonconjugate DPM models. Such methods are necessary, for example,
if the data are assumed to be normally distributed conditional on θ = (µ, σ 2) but
where the DP G(dµ, dσ 2) is centered on G0(dµ, dσ 2) = N(dµ|a, b)Γ (dσ 2|c, d) in-
stead of the usual conjugate normal–gamma distribution. Alternatively, let Fθ denote a
Poisson(θ) distribution and assume G(dθ) is centered a log-normal distribution.

The issue that remains is how to use the MC samples from the marginal posterior of
θ in order to make inferences. There are some inferences that can be made and some
that cannot. For example, it is not possible to obtain interval inferences for the unknown
CDF F(·|G), or the population mean

∫
yF(dy|G) based solely on an MC sample from

p(dθ |Y). In general, for the marginalized DPM model, full inferences are not available
for arbitrary functionals of F(·|G) because G is not sampled. Subsection 2.3.3 addresses
these issues. However, as pointed out by Gelfand and Mukhopadhyay (1995), it is possi-
ble to obtain posterior expectations of linear functionals. For example, let p(·|θ∗) denote
the pdf for a sampled observation were the value of θ∗ to be known. Then the modeled
sampling density is p(·|G) = ∫

p(·|θ∗)G(dθ∗). Let T (p(·)) be a linear functional of an
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arbitrary pdf p(·). Then it is not difficult to show that (see Gelfand and Mukhopadhyay,
1995) ∫

T
(
p(·|G)

)
p(dG|Y) =

∫
T

(
p
(·|θ∗))p(

dθ∗|θ)
p(dθ |Y).

Having obtained a sample from the marginal posterior for (θ∗, θ) (using (1) to obtain
the full conditional for θ∗), the above integral is easily approximated. So clearly it is
possible to obtain MCMC approximations to the posterior mean of the conditional mean
E(y|θ∗), and also the pdf p(y|θ∗), and corresponding CDF Fθ∗(y), for all y. West et
al. (1994) catalogue very interesting applications of DPM’s to multivariate multimodal
density estimation and random coefficient growth curves. Kottas and Gelfand (2001a)
modeled semiparametric survival data with DPM’s and showed how to make inferences
for the median time to survival functional.

2.3.2. Extensions
Three extensions of the basic DPM model include the incorporation of covariates for
semiparametric regression, a prior distribution for α, and centering the DP on a family
of parametric distributions Gη with a prior distribution specified for η.

Perhaps the most important extension involves the incorporation of covariates into
the model. Gelfand (1999), Kleinman and Ibrahim (1998), Mukhopadhyay and Gelfand
(1997), and Bush and MacEachern (1996) discussed semiparametric regression for the
DPM model. The basic model is given by:

yi |θi, xi, β
⊥∼ p(yi |θi, xi, β)

θi |G i.i.d.∼ G

G|α,G0 ∼ DP(αG0)

β ∼ p(dβ),

where yi denotes the response for subject i with covariate vector xi , and the θi’s are
random effects. The model is fitted using Gibbs sampling where the θi’s are sampled
from the full (marginal) conditional distribution corresponding to p(dθ |β, Y ), which
is obtained with only slight notational changes from what was previously described,
and where β is sampled from the full (marginal) conditional distribution p(dβ|θ, Y ) ∝
p(dβ)

∏n
i=1 p(yi |θi, xi, β). Sampling the full conditional distribution for θ will often

require nonconjugate methods.
The precision parameter α can also be modeled thereby inducing a prior distribution

on the number of distinct clusters. Escobar and West (1995) used a data augmentation
approach to model α using a gamma prior, α|a, b ∼ Γ (a, b), and introducing a clever
latent variable that makes the Gibbs sampling easy. This same approach can be used in
DP and MDP models.

Centering the DP on a parametric family of parametric {Gη: η ∈ Ω} with a prior
p(dη) is also possible, e.g., G ∼ ∫

DP(αGη)p(dη). The full conditional distribution
for η is obtained in the same way the marginal conditional was obtained in the MDP
model. For the normal linear mixed model with simple random effects, centering the
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random effects distribution on the N(0, σ 2) family with an inverse gamma prior on σ 2

results in an inverse gamma distribution for the full conditional for σ 2 (Bush and Mac-
Eachern, 1996). Modeling a random effects distribution with a DP prior centered on
the zero-mean multivariate normal distribution with covariance matrix D, where D−1

is distributed Wishart, the full conditional of D−1 is distributed Wishart (Kleinman and
Ibrahim, 1998).

2.3.3. General inferences
Inferences for the marginalized DPM model were discussed at the end of Section 2.3.1.

The full DPM model is in the form y1, y2, . . . , yn|F i.i.d.∼ F(·|G) = ∫
Fθ(·)G(dθ),

where Fθ has corresponding pdf p(·|θ). We first indicate how to obtain full inferences
for linear functionals and then for arbitrary functionals of F .

In the first instance, run the Gibbs sampler for the marginalized DPM. Once con-
vergence is achieved and the “burn-in” discarded, the Gibbs sampler yields the output
{θj = (θ

j

1 , . . . , θ
j
n ): j = 1, . . . ,MC}. Linear functionals of F ≡ F(·|G) are again

given by T ≡ T (F ) = ∫
T [p(·|θ∗)]G(dθ∗). Then for each θj , we obtain T j by first

sampling from the updated DP for G, namely sample Gj ∼ G|θj using the Sethuraman
(1994) construct. Then for each j obtain a sample of B i.i.d. values from Gj , e.g.,

sample θi∗
i.i.d.∼ Gj . Finally obtain,

T j = 1

B

B∑
i=1

T
[
p
(·|θi∗

)]
, j = 1, . . . , MC,

which yield (approximate) realizations from the posterior distribution of T (F )|Y . The
sample {T j }MC

j=1 is used to obtain point and interval estimates of T (F ), as well as its
posterior pdf.

Posterior inferences for nonlinear T (F ) are obtained as above by simply obtain-
ing Fj = ∫

p(·|θ∗)Gj (dθ∗), and the corresponding T (F j ), j = 1, . . . , MC. In each
instance, Gj is obtained by sampling a truncated version of the Sethuraman (1994)
representation for G. Gelfand and Kottas (2002) give details.

2.4. Polya tree and mixtures of Polya tree models

Polya tree models were first discussed by Freedman (1963), Fabius (1964) and Ferguson
(1974). Use of PT models for complicated data was historically difficult due to math-
ematical intractability. However, as with DPM models, modern MCMC methods have
allowed data analysts to once again consider PT’s for modeling data nonparametrically.
Lavine (1992, 1994) and Mauldin et al. (1992) have carefully developed and catalogued
much of the current theory governing PT’s.

The PT is a generalization of the DP. A particular general specification of the PT
places probability one on absolutely continuous F ’s, thus avoiding the discreteness is-
sues associated with the DP. Here, the sample space, Ω , is successively partitioned
into finer-and-finer disjoint sets using binary partitioning. At the first level of the tree,
a two set partition is constructed with a single pair of corresponding branch probabil-
ities defining the marginal probabilities of these sets. The mth level partition has 2m
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sets and corresponding conditional branch probabilities (probability of being in a set in
this partition, given that it is contained in the corresponding parent set in the (m − 1)st
level). Starting from the first level (i.e. the top of the tree), there is a unique path down
the branches of the tree to each set at level m, and consequently to any real number
in Ω if one continues as m → ∞. The marginal probability of any level m set is simply
the product of the corresponding conditional branch probabilities that lead to that set.
Randomness is incorporated by specifying independent Dirichlet distributions on each
of the pairs of conditional branch probabilities at each level of the tree.

To make this more precise, the first partition of Ω is {B0, B1}. Then further split B0
into {B00, B01}, and split B1 into {B10, B11} yielding the 4 disjoint sets at level 2 of
the tree. Continue by letting ε = ε1 · · · εm be an arbitrary binary number, and split Bε

into {Bε0, Bε1} for all ε, and continue ad infinitum. The schematic below conveys the
splitting for m = 2.

B0 B1
B00 B01 B10 B11

Then define the random marginal probabilities Y0 = F(B0), Y1 = 1 − Y0 = F(B1),
and the successive conditional probabilities Y00 = F(B00|B0), Y01 = 1 − Y00 =
F(B01|B0), Y10 = F(B10|B1), Y11 = 1 − Y10 = F(B11|B1), . . . , Yε0 = F(Bε0|Bε),
Yε1 = 1 − Yε0 = F(Bε1|Bε), etc. The marginal probability of a set in the mth
partition is calculated as F(Bε1···εm) = ∏m

j=1 Yε1···εj
. The PT specification is com-

pleted by specifying Yε1···εm0
ind∼ Beta(αε1···εm0, αε1···εm1) (i.e. (Yε1···εm0, Yε1···εm1) ∼

Dirichlet(αε1···εm0, αε1···εm1)), for all sets in all partitions. The collection of partitions is
denoted as Π and the collection of parameters of all the beta distributions is denoted A.
We write F |Π,A ∼ PT(Π,A).

It is straightforward to establish conjugacy of the PT model, namely if y|F ∼ F ,
F ∼ PT(Π,A), then F |y,Π,A ∼ PT(Π,A∗), A∗ = {αε + I (y ∈ Bε),∀ε}.

The PT process can be centered on a particular F0 by selecting Π = {F−1
0 ((i −

1)/2m), F−1
0 (i/2m)): i = 1, . . . , 2m,m = 1, 2, . . .}. Then setting αε0 = αε1 for all ε,

we obtain E{F(Bε1···εm)} = 2−m = F0(Bε1···εm). Ferguson (1974) showed that for
γ > 0 and αε1···εm−10 = αε1···εm−11 = γm2, F is absolutely continuous with proba-
bility one. This has become the “standard” parameterization for αε. The parameter γ

determines how concentrated the prior specification is about the prior guess, F0. Large
γ results in the prior being more concentrated on F0, e.g., random F ’s sampled from
the PT will concentrate both in terms of similarity in shape and distance from the fixed
F0, while with γ near zero, simulated CDF’s often will be considerably dispersed in
terms of shape and distance from the fixed F0. From here on, we choose this standard
parametrization and denote the PT distribution as PT(Π, γ ).

A major criticism of the PT is that, unlike the DP, inferences are somewhat sensitive
to the choice of a fixed partition Π . This led Paddock et al. (2003) to consider “jittered”
partitions. Hanson and Johnson (2002) instead considered MPT’s, wherein inferences
are obtained having mixed over a random partition Πθ thereby alleviating the influence
of a fixed partition on inferences.

The MPT is simply defined by allowing the base probability measure to depend on
an unknown θ ∈ Θ . Thus the base measure becomes a family of probability measures,
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{Fθ : θ ∈ Θ}. This leads to a family of partition families {Πθ : θ ∈ Θ}. A prior is placed
on θ , p(dθ). The basic MPT model is represented as

y1, . . . , yn|Fθ
i.i.d.∼ Fθ , Fθ ∼ PT(Πθ , γ ), θ ∼ p(dθ)

or equivalently yi
i.i.d.∼ F ∼ ∫

PT(Πθ , γ )p(dθ).
If we only specify Π or Πθ to a finite level M , then we have defined a partially

specified (or finite) PT or MPT. For a finite PT we write F |ΠM, γ ∼ PT(ΠM, γ ).
Lavine (1994) detailed how such a level M can be chosen by placing bounds on the
posterior predictive density at a point. Hanson and Johnson (2002) have recommended
the rule of thumb M

•= log2 n. On the sets that comprise level M of the tree, one may
consider F to follow F0 (or Fθ ) restricted to this set.

Barron et al. (1999) note that the posterior predictive densities of future observations
computed from Polya tree priors have noticeable jumps at the boundaries of partition
sets and that a choice of centering distribution F0 “that is particularly unlike the sample
distribution of the data will make convergence of the posterior very slow.” The MPT
appears to mitigate some of these problems (Hanson and Johnson, 2002). In particular,
with a MPT, the predictive density in a regression problem was shown to be differen-
tiable by Hanson and Johnson (2002).

Methods of fitting Polya trees to real data are discussed by Walker and Mallick (1997,
1999), and methods for MPT’s are discussed by Hanson and Johnson (2002). Berger and
Gugliemi (1999) considered the problem of model fit by embedding a parametric family
in a larger MPT family.

2.5. The gamma process model

The survival function for nonnegative data is defined as S(t) = 1−F(t), t > 0. For con-
tinuous data, the corresponding hazard function is defined to be λ(t) = − d

dt
�n(S(t)),

and the cumulative hazard is defined to be Λ(t) = ∫ t

0 λ(s) ds. It follows that S(t) =
exp(−Λ(t)). Thus in survival modeling for a continuous response, it is possible to
place a probability distribution on the space of all probability models for nonnegative
continuous data by placing a probability distribution on the family of all possible cu-
mulative hazard functions. Kalbfleisch (1978) proposed using the gamma process (GP)
to model the cumulative hazard function Λ(·) in the context of the proportional hazards
model (Cox, 1972). We follow Ibrahim et al. (2001) and define the GP as follows.

On [0,∞) let Λ0(t) be an increasing, left-continuous function such that Λ0(0) = 0.
Let Λ(·) be a stochastic process such that (i) Λ(0) = 0, (ii) Λ(·) has independent
increments in disjoint intervals, and (iii) Λ(t2) − Λ(t1) ∼ Γ (α(Λ0(t2) − Λ0(t1)), α)

for t2 > t1. Then {Λ(t): t � 0} is said to be a GP with parameter (α,Λ0) and denoted
Λ ∼ GP(α,Λ0).

Note that E(Λ(t)) = Λ0(t) so that Λ is centered at Λ0. Also, Var(Λ(t)) = Λ0(t)/α

so that, similar to the DP and PT, α controls how “close” Λ is to Λ0 and provides a
measure of how certain we are that Λ is near Λ0. It is interesting to note that Ferguson
(1973, Section 4) recasts the DP as a scaled GP.

The posterior of the GP is characterized by Kalbfleisch (1978); his results for the
PH model simplify when no covariates are specified. With probability one, the GP is a
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monotone nondecreasing step function, implying that the corresponding survivor func-
tion is a nonincreasing step function. Similar to the DP, matters are complicated by
the presence of ties in the data with positive probability. When present in the observed
data, such ties make the resulting computations awkward. Clayton (1991) described a
Gibbs sampler for obtaining inferences in the proportional hazards model with a GP
baseline.

3. Illustrations

In this section we discuss particular modeling applications and we analyze three data
sets using a variety of BNP techniques. We first consider a two sample problem and
apply BNP models to analyze these data. Next we discuss the rather large area of semi-
parametric regression modeling and illustrate with a number of fundamental survival
analysis models for data. We analyze a classic data set on time to death from diagno-
sis with leukemia. We then discuss nonparametric regression function estimation using
a variety of basis models for representing the regression function. These methods are
illustrated on a data set involving the estimation of mean response of nitric oxide and
nitric dioxide in engine exhaust (using ethanol as fuel) as a function of the air to fuel ra-
tio. Methods for the two sample problem were implemented in S-Plus while the survival
analysis and the function estimation analyses were done in WinBUGS and Mathemat-
ica.

3.1. Two sample problem

A randomized comparative study was conducted to assess the association between
amount of calcium intake and reduction of systolic blood pressure (SBP) in black males.
Of 21 healthy black men, 10 were randomly assigned to receive a calcium supplement
(group 1) over a 12 week period. The other men received a placebo during the 12 week
period (group 2). The response variable was amount of decrease in systolic blood pres-
sure. Negative responses correspond to increases in SBP. The data appear in Moore
(1995, p. 439). Summary statistics for both groups are given in Table 1.

Let F1 and F2 denote the population distributions for decrease in SBP for groups 1
and 2, respectively. The data were fitted to the DP, MDP, DPM, PT, and MPT models.
Prior distributions were constructed assuming the range of decrease of SBP for the
calcium group is between −20 and 30 and that the data for the placebo group would
range between −20 and 20. The midpoints were used for prior estimates of the mean
change in SBP, namely 5 and 0 for groups 1 and 2. Prior estimates for the standard
deviation were computed as the range/6. Hence, for the calcium group we centered the
DP and PT distributions on an F10 = N(5, 70), and we centered the placebo group on
an F20 = N(0, 44).

For the MDP model, we assume F1|(µ1, σ
2
1 ) ∼ DP(αN(µ1| 5, σ 2

1 )IG(σ 2
1 | 2, 70))

and F2|(µ2, σ
2
2 ) ∼ DP(αN(µ2| 0, σ 2

2 )IG(σ 2
2 | 2, 44)). Therefore E(σ 2

1 ) = 70 and
E(σ 2

2 ) = 44, and both prior variances are infinite.
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Table 1
Blood pressure data: summary statistics for the decrease in systolic blood pres-
sure data for the calcium and placebo groups

n Mean Median Std. Dev. Min Max

Calcium 10 5.0 4 8.7 −5 18
Placebo 11 −0.27 −1 5.9 −11 12

Table 2
Blood pressure data: prior and posterior medians and 95% probability intervals for functionals T (F ) for the
two-sample problem. The mean and median functionals are denoted by µ(·) and η(·), respectively

DP MDP DPM

T (F ) Prior Posterior Prior Posterior Prior Posterior

µ(F1)
5.08 4.96 4.90 4.97 5.05 5.08

(−10.4, 20.3) (0.5, 9.9) (−14.7, 25.9) (0.6, 10.0) (−5.2, 16.5) (0.3, 9.9)

µ(F2)
−0.08 −0.31 0.02 −0.25 0.13 −0.30

(−9.5, 9.3) (−3.3, 3.0) (−16.2, 15.3) (−3.2, 3.1) (−8.8, 9.6) (−3.3, 2.8)

η(F1)
5.01 5.17 4.93 5.27 5.14 4.89

(−10.3, 20.3) (−3.0, 11.0) (−16.4, 27.6) (−3.0, 11.0) (−4.6, 15.9) (0.2, 9.9)

η(F2)
−0.10 −1.1 −0.10 −1.1 0.25 −0.35

(−12.4, 11.9) (−3.1, 2.9) (−17.8, 17.1) (−3.1, 2.9) (−8.1, 8.7) (−3.3, 2.6)

µ(F1) − µ(F2)
5.12 5.23 4.86 5.23 5.08 5.24

(−9.8, 20.5) (−0.3, 11.1) (−19.4, 31.5) (−0.3, 10.8) (−8.94, 20.4) (0.0, 10.6)

η(F1) − η(F2)
5.19 4.91 4.86 5.01 5.22 4.99

(−14.0, 24.7) (−3.9, 14.1) (−22.3, 34.2) (−3.9, 14.1) (−8.4, 18.9) (−0.3, 10.8)

The DPM model used was, for k = 1, 2, and i = 1, . . . , nk with n1 = 10, n2 = 11,

xki |
(
µki, σ

2
ki

) ind∼ N
(
µki, τσ 2

ki

)
(
µki, σ

2
ki

)|Gk
ind∼ Gk

Gk|α,Gk0
ind∼ DP(αGk0).

Escobar and West (1995) discuss the parameter τ , which for density estimation
can be interpreted as a smoothing parameter. For the current problem, we se-
lected G10(dµ1, dσ 2

1 ) = N(dµ1|5, τ dσ 2
1 )IG(dσ 2

1 |2, 70), and G20(dµ2, dσ 2
2 ) =

N(dµ2|5, τ dσ 2
2 )IG(dσ 2

2 |2, 70), where τ was selected to be either 1 or 10 in the current
analysis.

For the MPT model, we centered on the family F10(dµ1, dσ1) = N(dµ1|5, 5)

Γ (dσ1|0.64, 0.08) for the calcium group and F20(dµ2, dσ2) = N(dµ2|0, 5)Γ (dσ2|0.45,

0.067) for the placebo group. In all models with DP components, we set α = 1 and we
set γ = 0.1 for models involving Polya trees.

Table 2 contains prior and posterior medians and 95% probability intervals for func-
tionals of F1 and F2 using the DP, MDP, and DPM models. The posterior estimates
are similar for all 3 models, especially for the DP and MDP models. Estimates of
these functionals using PT and MPT models are also readily available. For example,
based on the MPT models, the population median change in SBP for the calcium group,
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Fig. 1. Blood pressure data: prior (dotted) and posterior density estimates for both groups using the DPM
model with τ = 1 (solid) and τ = 10 (dashed). The longer tick marks along the x-axis correspond to the

observed data for the placebo group and the shorter tick marks to the observed data for the calcium group.

median(F1), is estimated to be 3.86 (−2.45, 11.53) and for the placebo group, an esti-
mate of median(F2) is −1.0 (−3.27, 2.83). Inferences for the differences in means and
medians are also given in Table 2. It appears that there would be a significant difference
if 90% intervals had been considered. Observe that no attempt was made to guarantee
that the priors were consistent across models and that this is clearly reflected in the
induced priors for the functionals considered in Table 2.

Density estimates from DPM models with τ = 1 and τ = 10 are given in Figure 1.
Also, the estimated CDF’s for both groups using MDP, DPM, and MPT models are in
Figure 2. The estimated CDF’s using DP models (not shown) are essentially identical
(for these data and for the given choices of α and γ ) to those from the MDP models and
the estimated CDF’s from the PT models (not shown) were similar to those from the
MPT models, but differ in that they were not as smooth due to partition effects. Finally
note that the prior and posterior density estimates are quite similar. Since our prior was
obtained independently of the data (from the second author), this is an indication that



hs25 v.2005/04/21 Prn:19/05/2005; 14:23 F:hs25009.tex; VTEX/GIT p. 17
aid: 25009 pii: S0169-7161(05)25009-5 docsubty: REV

Bayesian nonparametric modeling and data analysis 265

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

Fig. 2. Blood pressure data: posterior CDF estimates for both groups using the MDP (jagged), DPM (dashed),
and MPT (solid) models. The longer tick marks along the x-axis correspond to the observed data for the

placebo group and the shorter tick marks to the observed data for the calcium group.

the prior information was quite accurate. One final note is that the sample sizes are so
small for this problem that the DPM model density estimates look parametric. If there
were bumps in the true densities and with larger sample sizes, the DPM model would
reflect this fact. Since the truth is unknown here, we are not in a position to say that any
of the models are preferable.

3.2. Regression examples

Here, we mainly discuss two types of regression models. Both types can be expressed in
the usual form y = f (x)+ε. In one instance, we consider f (x) = xβ, and with ε ∼ F ,
F ∈ F where F consists of continuous distributions with median zero, which results
in xβ as the median of y|x, β or what has been called median regression. In a second
instance, we consider f ∈ F∗ and where the distribution of the error is assumed to have
been generated according to a parametric family. When the primary goal is estimation of
the regression function, f , parametric error models may suffice, but when considering
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predictive inference or in estimation of certain survival models, it is desirable to estimate
F nonparametrically. We discuss these two types of models in some detail and give
illustrations. We also discuss the situation where both f and F are allowed to be flexible.

We want to emphasize at the outset that our purpose here is mainly to illustrate the
fundamental ideas and methods. The published literature clearly goes well beyond what
we present here and we make no claims to having used the best or most sophisticated
method for any given problem. We emphasize the simplicity of the methods that are
presented here as many of them are accomplished in WinBUGS.

Our main illustration of semiparametric regression with unknown error distribution
is in the area of survival analysis, which is discussed next.

3.2.1. Regression for survival data
In this subsection, we first briefly discuss univariate survival data with censoring. We
proceed to discuss semiparametric accelerated failure time (AFT) and proportional haz-
ards (PH) models for censored survival data with covariates. We ultimately analyze a
classic data set on leukemia remission times using BNP methodology applied to AFT
and PH models. See Ibrahim et al. (2001) for descriptions of these models and for other
analyses of these data. All of the modeling done here applies to uncensored data and
thus to standard linear regression.

Denote survival times for n independently sampled individuals as T1, . . . , Tn. Right
censored data are denoted {(ti , δi): i = 1, . . . , n} where δi = 0 implies that Ti > ti ,
which corresponds to ti being an observed censoring time, and δi = 1 implies Ti = ti .
Censoring times are assumed independent of event times. With covariate information,
we have data {(ti , δi, xi): i = 1, . . . , n}.

Let T0 be a random survival time from a baseline distribution. The AFT model spec-
ifies that an individual with covariate vector x has the survival time Tx = g(x′β)T0,
for regression coefficients β and a monotone function g. This is equivalent to S(t |x) =
S(t/g(x′β)) where S(t) = P(T0 > t) is the baseline survival function and S(t |x) =
P(Tx > t).

Usually, g is taken to be the exponential function and the model is then equivalent to
log(Tx) = x′β + log(T0), i.e. a standard linear regression model. Standard parametric
analyses further assume that log(T0) = σε where ε is standard normal, extreme value,
or logistic. If ε has median zero, a median-zero regression model is obtained.

Christensen and Johnson (1988) obtain approximate, marginal inference in the AFT
model with a DP baseline S while Johnson and Christensen (1989) show that obtaining
full posterior inference from an AFT model with a DP baseline is infeasible. Kuo and
Mallick (1997) circumvent this difficulty by considering a DPM for S. They interpret
the baseline model as a “smoothed” DP. Walker and Mallick (1999), and Hanson and
Johnson (2002) considered, respectively, PT and MPT baselines in the AFT model,
whereas Kottas and Gelfand (2001a) described a DPM model for the baseline in the
AFT model; these models are all median regression models. Hanson and Johnson (2004)
extended the MDP model of Doss (1994) to an AFT model with a MDP baseline for
interval censored data.

On the other hand, the PH model has by far enjoyed the greatest success of any other
statistical model for survival data with covariates. Frequentist and Bayesian statistical
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literature on the topic far exceed that for any other survival model. The PH model is
specified using the baseline hazard function λ(t). For baseline survival T0, the hazard is
defined as

λ(t) = lim
dt→0+

P(t � T0 < t + dt)

dt
,

or λ(t) dt ≈ P(t � T0 < t + dt) for small dt . If T0 is absolutely continuous then
λ(t) = f (t)/S(t) where f and S the pdf and survivor function for T0, respectively.
Cox’s PH model (Cox, 1972) assumes that for an individual with covariate x, λ(t |x) =
g(x′β)λ(t), where g and β are as before (except for no intercept here). Typically g is
taken to be the exponential function yielding the interpretation of exp(xβ) as a relative
risk of “instantaneous failure” comparing an individual with covariates x to a baseline
individual. Under the PH model S(t |x) = exp(−exβΛ(t)). The latter expression can
be used to define the PH model when Λ has jump discontinuities, e.g., when T0 is a
mixture of continuous and discrete distributions.

The success of the PH model across a wide spectrum of disciplines is in part due
to the interpretability of the regression parameters and in part due to the availability of
easy to use software to fit the frequentist version of the model. In statistical packages
the model is fit via partial likelihood, involving only β, which is not a proper likelihood
but which does yield estimators with desirable properties such as asymptotic normality.
The infinite-dimensional parameter Λ is treated as a nuisance parameter and, if needed,
is estimated following the estimation of β. Bayesian approaches to the Cox model have
considered both the use of the partial likelihood in inference and the consideration of
a full probability model for (β, λ). We discuss only the latter and view the full, joint
modeling of parameters, as well as nonasymptotic inference as a particular benefit of
the Bayesian approach. Other BNP approaches have been discussed by Sinha and Dey
(1997), Laud et al. (1998) and Ibrahim et al. (2001). It should be pointed out that, despite
the flexibility of the PH model due to the baseline hazard being unspecified, the PH as-
sumption is still quite restrictive and easily fails for many data sets. The semiparametric
AFT model serves as a potential alternative when this is the case.

Given all of this background, we consider here a simple application of BNP method-
ology to a two sample survival analysis problem. Clearly there are many possible
approaches but we only consider two here for the purpose of illustration.

Data on the remission times from two groups of leukemia patients are considered by
Gehan (1965) and Kalbfleisch (1978) and are reproduced in Table 3. A PT AFT model
was fitted to these data with a Weibull(1.47, 19.61) base measure, estimated from a
parametric fit. We set γ = 0.1. The posterior median and equal-tailed 95% PI for β is
1.62 (0.70, 1.97). The Group 2 population has a median survival time estimated to be
about e1.62 ≈ 5 times that of Group 1. In Figure 3, estimated survival curves are plotted
for the two groups.

We now turn to the PH model. Although many stochastic processes have been used
as priors for Λ in the Cox model, we focus attention on the first to be used in this
context, the independent increments GP, which was discussed in Section 2.5. We now
give a detailed discussion of the implementation of this model for use in WinBUGS,
before discussing the BNP PH analysis of the leukemia data.
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Table 3
Leukemia data: weeks of remission for leukemia patients

Group 1: 1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23
Group 2: 6, 6, 6, 6*, 7, 9*, 10, 10*, 11*, 13, 16, 17*, 19*, 20*, 22, 23, 25*,32*, 32*, 34*, 35*

*Right censored observation.

Fig. 3. Leukemia data: estimated survival curves for AFT and PH models; Group 2 (solid) and Group 1
(dashed).

Burridge (1981) and Ibrahim et al. (2001) suggest that the model as proposed by
Kalbfleisch (1978) and extended by Clayton (1991) is best suited to grouped survival
data. Walker and Mallick (1997) considered an approximation to the GP for continuous
data that we describe here, in part because it is readily implemented in WinBUGS.
Define a partition of (0,∞) by {(aj−1, aj ]}Jj=1 ∪ (aJ ,∞) where 0 = a0 < a1 < a2 <

· · · < aJ+1 = ∞. Here, aJ is taken to be equal to be max({ti}ni=1). If Λ ∼ GP(α,Λ0)

then by definition Λ(aj ) − Λ(aj−1)
ind∼ Γ (α(Λ0(aj ) − Λ0(aj−1)), α). Walker and

Mallick (1997) make this assumption for the given partition and further assume that
λ(t) is constant and equal to λj on each (aj−1, aj ] for j = 1, . . . , J . This implies λj ∼
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Γ (αλ0j , α) where λ0j = (Λ0(aj ) − Λ0(aj−1))/(aj − aj−1), and yields a particular
piecewise exponential model.

Now given Λ(·), or equivalently {λj }Jj=1, S(t) = exp(−Λ(t)), S(t |x) =
exp(−ex′βΛ(t)) and f (t |x) = ex′βλ(t) exp(−ex′βΛ(t)). Assume that the event times
{ti}ni=1 are included as some of the partition points {aj }Jj=1. Let j (i) be such that

ti = aj (i). Then Λ(ti) = ∑j (i)

j=1 λj∆j where ∆j = aj − aj−1 and λ(ti) = λj(i).
The likelihood is given by

L(λ, β) =
n∏

i=1

exp
(−exiβΛ(ti)

)[
exiβλ(ti)

]δi

=
∏
i

j (i)∏
j=1

exp
(−exiβλj∆j

) ∏
{i:δi=1}

exiβλj (i)

which is proportional to a product of Poisson kernels. Therefore, with independent
gamma priors on {λj }, this model is readily fitted in WinBUGS. This likelihood is simi-
lar to that obtained by Clayton (1991) using a counting process argument (for example,
see “Leuk: survival analysis using Cox regression” in Examples Volume I, WinBUGS
1.4). Clayton’s approach requires sampling Λ(·) only at the {ti} to obtain full inference
for β. The piecewise exponential model has been used to accommodate approximations
to a correlated prior process (Ibrahim et al., 2001, Section 3.6) and also used in joint
models accommodating a latent longitudinal marker that affects survival (Wang and
Taylor, 2001; Brown and Ibrahim, 2003) due to the simple structure of the model.

To get more of the flavor of the GP from this approximation, one might take the
partition to be a fine mesh. Furthermore, a mixture of gamma processes can be induced
by assuming Λ ∼ GP(α,Λθ ), θ ∼ f (θ). For example, one might center Λ(·) at Λθ =
θt , the exponential family, and place a hyperprior on θ . This results in a mixture of GP’s
(MGP).

We adapted this approach and fit the MGP PH model to the leukemia data using
vague hyperpriors in WinBUGS. The posterior median and 95% PI for β is 1.56 (0.84,
2.36). The hazard of expiring in Group 1 is about e1.56 ≈ 4.8 times as likely as Group 2
at any time t . Estimated survival curves are given in Figure 3.

Other prior processes used in PH survival models include the beta process (Hjort,
1990), and the extended gamma process (Dykstra and Laud, 1981), which smooths the
GP with a known kernel. Ishwaran and James (2004) extend this work and the work of
others (notably Lo and Weng, 1989, and Ibrahim et al., 1999) to a very general setting
by capitalizing on a connection between the GP and the DP. Often Bayesian semipara-
metric survival models are fit by partitioning [0,∞) into a fine mesh and computing
grouped data likelihoods; the approach of Ishwaran and James (2004) avoids this com-
putationally intensive approach. Kim and Lee (2003) consider the PH model with left
truncated and right censored data for very general neutral to the right priors.

Ibrahim et al. (2001) also discuss the implementation of frailty, cure rate, and joint
survival and longitudinal marker models. Mallick and Walker (2003) develop a frailty
model that uses PTs and includes proportional odds, AFT, and PH all as special cases.
The model utilizes a PT error term and a monotone transformation function modeled
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with a mixture of incomplete beta functions. Prior elicitation for survival models are
discussed by Ibrahim et al. (2001). Methods on prior elicitation for regression co-
efficients in parametric survival models developed by Bedrick et al. (2000) apply to
Bayesian semiparametric AFT modeling. Ishwaran and James (2004) develop weighted
GP’s in the multiplicative intensity model. Huzurbazar (2004) provides an extensive in-
troduction to the use of Bayesian flowgraph models for the modeling of survival data.
Mallick et al. (1999) use multivariate adaptive regression splines in a highly flexible
model allowing for time-dependent covariates. Space does not permit us to discuss the
extensive literature on semiparametric cure rate models, competing risks models, mul-
tivariate models, and other important areas.

In the absence of covariates, Susarla and van Ryzin (1976) assumed a DP prior for
F for right-censored data and established that the Kaplan and Meier (1958) estimator is
obtained as α → 0+. Johnson and Christensen (1986) extended the model to grouped
survival data and similarly showed that Turnbull’s (1974) estimator is the correspond-
ing limiting form. Doss (1994) and Doss and Huffer (2004) discussed fitting the MDP
model to censored data and compared various algorithms based on importance sam-
pling and MCMC to obtain inferences. They also provided user-friendly software for
the statistical packages R and S-Plus to fit these models. Other related approaches in-
clude Lavine (1992), who gave an example of density estimation for survival data via
PT’s. Wiper et al. (2001) used a mixture of Gamma densities in the spirit of Richardson
and Green (1997) to model data with support on [0,∞). The DPM model of Escobar
and West (1995) can also be used for survival data or log survival data.

3.2.2. Nonparametric regression with known error distribution
Estimation of an unknown regression function is a common and extensively researched
area across many disciplines. The problem is typically to estimate the mean function f

from data {(xi, yi)}ni=1 in the model

yi = f (xi) + εi, εi i.i.d., E(εi) = 0,

but in some applications the shape of the error distribution εi is of interest as well.
We initially assume xi is univariate but later discuss the case when xi is a vector of
predictors.

Denison et al. (2002) provide an introduction to Bayesian semiparametric regression
methods focusing primarily on splines. Müller and Quintana (2004) review advances
in Bayesian regression and additionally discuss neural networks. Müller and Vidakovic
(1999) discuss Bayesian models incorporating wavelets.

One successful approach borrows from the field of harmonic analysis and assumes f

can be represented as a weighted sum of basis functions. For f sufficiently smooth, and
given an orthonormal basis {φj }∞j=1 of the function space of square-integrable functions

on some region R, L2(R), one can write the Fourier representation of f as f (x) =∑∞
j=0 βjφj (x) where βj = ∫

R
f (x)φj (x) dx. The basis is said to be orthonormal if∫

R
φi(x)φj (x) dx = δij where δij = 1 if i = j and zero otherwise. Orthonormal bases

make certain common calculations trivial in some problems, but are not required of this
approach. Popular choices for {φj } are the Fourier series (sines and cosines), spline
bases, polynomials, and wavelet bases.
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Fig. 4. Cosine basis functions cos(xπ) (solid) and cos(x4π) (dashed); Haar basis functions φ2,1, φ4,6 and
φ5,14 from left to right.

It is impossible to estimate {βj }∞j=0 with finite data. All but a finite number of these
coefficients must be set to zero for estimation to proceed and therefore f is approxi-
mated by a finite number of basis functions f (x) = ∑J

j=0 βjφj (x) in practice. The
basis functions are often ordered in some fashion from broad functions that indicate
a rough trend to functions that are highly oscillatory over R. A statistical problem is
to determine at which point noise is essentially being modeled by the more oscillatory
functions, or equivalently at which point J to “cutoff” the basis functions. In Figure 4
we see two of the cosine basis functions {cos(xjπ)}∞j=0 and three Haar basis functions
(described later) on R = [0, 1].

Traditionally, the choice of J is an interesting problem with many reasonable, typi-
cally ad hoc, solutions. This choice deals intimately with the issue of separating signal
from the noise. It is well-known that an (n−1)-degree polynomial fits data {(xi, yi)}ni=1
perfectly, an example of overfitting, or the inclusion of too many basis functions.
Efromovich (1999) overviews common bases used in regression function estimation
and addresses choosing J in small and large samples.
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If one fixes J and assumes i.i.d. Gaussian errors then the standard linear model is
obtained:

yi = β0 + β1φ1(xi) + · · · + βJ φJ (xi) + εi, εi
i.i.d.∼ N

(
0, σ 2).

Placing a prior on β and σ−2 yields the Bayesian linear model (Lindley and Smith,
1972), which is easily implemented in WinBUGS. In Figure 5 we examine orthonormal
series fits to data on the amount of nitric oxide and nitric dioxide in the exhaust of a
single-cylinder test engine using ethanol as fuel (Brinkman, 1981). The response is in
µg per joules and the predictor is a measure of the air to fuel ratio. These data are part of
a larger data set used throughout the S-Plus Guide to Statistics (MathSoft, 1999) to illus-
trate various smoothing techniques, including locally weighted regression smoothing,
kernel smoothers, and smoothing splines. The cosine, φi(x) = cos(iπ(x − 0.5)/0.8),
and Legendre polynomial bases were used for illustration with R = [0.5, 1.3] and
fixed J = 5. Independent N(0, 1000) priors were placed on the regression coefficients
and the precision σ−2 was assumed to be distributed Γ (0.001, 0.001) as an approxi-
mation to Jeffreys’ prior. The prior of Bedrick et al. (1996) can be used to develop an
informative prior on β. The choice of basis functions, cutoff J , and region R will all
affect posterior inference.

Multivariate predictors xi = (xi1, . . . , xip) can be accommodated via series ex-
pansions by considering products of univariate basis functions. For example, in the
plane, simple products are formed as φjk(x1, x2) = φj (x1)φk(x2). The regression
model is then yi = ∑J

j=1
∑J

k=1 βjkφjk(xi1, xi2) + εi . Additive models are an alter-
native where the mean response is the sum of curves in each predictor, e.g., E(yi) =∑J1

j=1 βj1φj (xi1) + ∑J2
j=1 βj2φj (xi2).

A popular Bayesian alternative to fixing the number of components is to place a prior
on J and implement the reversible jump algorithm of Green (1995). Reversible jump
MCMC approximates posterior inference over a model space where each model has a
parameter vector of possibly different dimension. A prior probability is placed on each
of J = 1, 2, . . . , J0, where J0 is some natural upper bound chosen such that considera-
tion of J > J0 would be superfluous. Reversible jump for the regression problem in the
context of a spline basis is discussed in Denison et al. (2002) and used, for example, by
Mallick et al. (1999) and Holmes and Mallick (2001). Many spline bases are built from
truncated polynomials. For example {(x − aj )

3+}Jj=1 is a subset of a cubic spline basis,

where {aj }Jj=1 are termed knots and (x)+ is equal to x when x > 0 and equal to zero
otherwise.

Another approach is to fix J quite large and allow some of the {βj }Jj=1 to be zero
with positive probability. This approach, advocated by Smith and Kohn (1996), can be
formulated as βj ∼ γjβ

∗
j where γj ∼ Bernoulli(θj ) independent of β∗

j ∼ N(bj , η
2
j ),

and for moderate J and independent βj priors can be programmed in WinBUGS. For
the ethanol data using the cosine basis, we consider the rather naive, data-driven prior

γj
i.i.d.∼ Bernoulli(0.5), β∗

j |σ 2 ∼ N(bj , 10σ 2vj ). Where X is the design matrix from
the model with all basis functions up to J , i.e., γ1 = · · · = γJ = 1, vj are the diag-
onal elements of (X′X)−1 and (b1, . . . , bJ ) are the least squares estimates taken from
(X′X)−1X′y. Figure 6 shows the resulting estimate of the regression function. Five of
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Fig. 5. Ethanol data: mean function estimate using cosine and Legendre bases, J = 5.

the ten basis functions have posterior probability P(γj = 0|y) less than the prior value
of 0.5. Clyde and George (2004) discuss priors of this type, specifically the g-prior, in
more detail.

Crainiceanu et al. (2004) outline a strategy for fitting penalized spline models in Win-
BUGS. They capitalize on an equivalence between fitting penalized spline and mixed
effect models and the resulting WinBUGS implementation is straightforward. They il-
lustrate the possibilities by fitting nonparametric regression, binomial regression, and
nonparametric longitudinal ANOVA models, all in WinBUGS. An advantage of the
Bayesian approach over the frequentist approach is that it obviates the use of “plug-in”
estimates when computing interval estimates. We apply the approach of Crainiceanu et
al. (2004) by fitting a penalized quadratic spline model to the ethanol data. Specifically,
the model is

yi = β0 + β1xi + β2x
2
i +

10∑
k=1

bk(xi − κk)
2+ + εi,



hs25 v.2005/04/21 Prn:19/05/2005; 14:23 F:hs25009.tex; VTEX/GIT p. 26
aid: 25009 pii: S0169-7161(05)25009-5 docsubty: REV

274 T.E. Hanson, A.J. Branscum and W.O. Johnson

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

Fig. 6. Ethanol data: estimates of regression mean functions using a cosine basis, and a DPM model (see
Section 3.2.3).

where bk|σb
i.i.d.∼ N(0, σ 2

b ) independent of εi
i.i.d.∼ N(0, σ 2

ε ). Here, the knots {κk}10
k=1 are

defined as κi = 0.4 + 0.1i, evenly spaced over the range of the predictor. In Figure 7
we see the penalized spline estimate along with 95% pointwise probability intervals.

A unique class of orthonormal bases are wavelet bases. Wavelets are useful for mod-
eling functions whose behavior changes dramatically at different locations and scales,
often termed “spatially inhomogeneous.” Think of a grayscale photograph of the Rocky
mountains. Much of the photograph will be flat, rocky homogeneous areas where the
grayscale changes little. At the edges of a mountain leading to sky, however, the scale
changes abruptly. Also, foliage around the base of the mountain will have highly vary-
ing grayscale in a small area relative to the mountainous part. Wavelets can capture
these sorts of phenomena and for this reason are extensively used in image process-
ing.

The simplest wavelet basis is the Haar basis (Haar, 1910). The Haar basis is also
the only wavelet basis with basis functions that have a closed form. On the interval
R = [0, 1] the Haar basis (as well as other wavelet bases) is managed conveniently by
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Fig. 7. Ethanol data: estimate of regression mean function using a penalized spline.

a double index and is derived from the Haar mother wavelet

φ(x) =
{ 1, 0 � x < 0.5,

−1, 0.5 � x � 1,

0, otherwise

}

through the relation φij (x) = φ(2(i−1)x − j + 1)2(i−1)/2 for i = 1, . . . ,∞, and
j = j (i) = 1, . . . , 2(i−1). The set {I[0,1](x)} ∪ {φij } forms an orthonormal basis of
[0, 1]. Figure 4 shows three of the Haar basis functions; the i indexes the scale of the
basis function whereas the j indexes location. For large i, wavelet basis functions can
model very localized behavior. Contrast the Haar basis to the cosine basis where basis
functions oscillate over the entire region R. For this reason wavelets can model highly
inhomogeneous functions but also require special tools to ensure that mean estimates
do not follow the data too closely. These tools, broadly termed “thresholding,” require
that there is substantial data-driven evidence that a wavelet basis function belongs in
the model, and more evidence is required for larger i. Bayesian thresholding typically
places mixture priors on basis coefficients in the wavelet domain after transforming data
using the discrete wavelet transform. These priors place positive probability that some
coefficients are very small (or zero). Müller and Vidakovic (1999) discuss Bayesian
wavelet modeling in detail. A nice, short introduction to Bayesian wavelets and thresh-
olding is Vidakovic (1998).
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Fig. 8. Ethanol data: estimates of regression mean functions using Harr wavelets.

For illustrative purposes, we fit the following Haar wavelet model to the ethanol data
in WinBUGS:

yk = β0 +
4∑

i=1

2i−1∑
j=1

γijβ
∗
ij φij (xk) + εk, εk

i.i.d.∼ N
(
0, σ 2).

A simple data-driven prior was constructed in the same manner as for the cosine basis
except γij ∼ Bernoulli(2−i ), ensuring that the prior probability of including a basis
function decreases with how “localized” the function is. Figure 8 shows the resultant
mean function estimate. Four of the 15 basis functions considered had posterior proba-
bilities of being included in the model less than 0.1.

3.2.3. Nonparametric regression with unknown error distribution
Combinations of the approaches discussed so far yield very rich, highly flexible models
for both the regression function f and the error ε. Alternatively, a highly flexible model
that has ties to kernel regression and local linear regression is the use of DPMs for
multivariate data.

To obtain inference in the general model y(x) = f (x) + e(x), Müller et al. (1996)
suggest modeling data {zi = (xi, yi)}ni=1 as arising from a DPM of multivariate
Gaussian densities. As is typical, inference is obtained with the DP integrated out and
the model reduces to a particular finite mixture model. The model is given hierarchically
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by

zi |µi,Σi
ind∼ N(µi,Σi), (µi,Σi)|G i.i.d.∼ G, G ∼ DP(αG0).

The authors consider the prior g0(µ,Σ−1) = Np(µ|m,B)Wp(Σ−1; ν, (Sν)−1) where
p is the dimension of zi = (xi, yi), g0 is the density of G0, Np(x|µ,Σ) is the pdf of a
multivariate normal variate with mean µ and covariance Σ , and Wq(ν,Σ) is the pdf of
a Wishart variate with degrees of freedom ν and mean νΣ . Hyperpriors can be further
placed on m, B, S, and α.

An estimate of f (x0) is provided by E(yn+1|xn+1 = x0, x, y) and is obtained using
conditioning arguments. This estimate is essentially a locally-weighted piecewise linear
estimate averaged over the MCMC iterates. We consider a simple version of this model
for the ethanol data by taking m to be the sample mean z̄, B as 10 times the sample
covariance of {zi}ni=1, α = 2, S = diag(0.052, 0.252), and ν = 2.

The prior expected number of components is about 8. Let k denote the num-
ber of distinct components in the model. A posteriori, we find P(k � 3|z) ≈ 0,
P(4 � k � 6|z) ≈ 0.94, and P(k � 7|z) ≈ 0.04. The estimated regression func-
tion and pointwise 95% probability intervals are in Figure 6, assuming that the marginal
finite mixture model (induced by the DPM) is the full probability model. Although
the example illustrates regression with one predictor, an attractive feature of the DPM
model is that it is readily extended to many predictors, as long as modeling assumptions
are reasonable.

4. Concluding remarks

The field of Bayesian nonparametrics relies on an interesting combination of the (some-
times abstract) development of probability models on large spaces and modern Markov
chain Monte Carlo technology. The former is necessary for the application of Bayes
theorem and the latter for its implementation. Analysis of complex and interesting data
using BNP methodology was made to wait for the recent development of MCMC meth-
ods. Our paper has attempted to give a flavor of what is now possible due to the merger
of these areas. We remind the reader that our goal was to present fundamental ideas
and to illustrate them with relatively simple methods, rather than the most sophisticated
ones.

There is a long list of methods and models that have been left out, too long to mention
all. We simply mention a few. First, we have not discussed nonparametric dependent
data modeling. MacEachern (2000) invented the dependent Dirichlet Process (DDP),
which builds in dependence among a collection of random probability measures. The
DDP has recently been used by De Iorio et al. (2004), who used ANOVA structure in
modeling dependence, and by Gelfand et al. (2004) for modeling spatial data. Longi-
tudinal modeling using the DDP should be straightforward given their development for
spatial data. Dependent nonparametric processes were also considered by Gelfand and
Kottas (2001) and Kottas and Gelfand (2001b), and Hoff (2003) in the context of model-
ing stochastic order. Another area that is ripe for development is the application of BNP
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methods to bioinformatics and proteomics, see for example Do et al. (2004). Areas that,
to our knowledge, still require attention are (i) the development of mixtures of Polya
tree priors for multivariate data and (ii) methods for model selection and model fit, for
example how can one formally choose between semiparametric PH and AFT models
and also assess their goodness of fit.

Throughout this article, very little has been said about theory since our goal was
to present basic modeling techniques and to give a flavor for their application to data.
There are of course many articles that develop theoretical aspects of BNP models. See
for example Diaconis and Freedman (1986) for a BNP model and method based on DP’s
that fails. However, there is much theoretical work that establishes that BNP methods
are valid. For example, Ghosal et al. (1999) established consistency of density estimates
based on an MPT. Regazzini et al. (2002) recently presented results for exact distribu-
tions of functionals of a DP. Choudhuri et al. (2004) discuss asymptotic properties of
BNP function estimates and give many references. Also see the monograph of Ghosh
and Ramamoorthi (2003) for additional theoretical background material and references.
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