
AMS 206B: Intermediate Bayesian Inference
HOMEWORK #4 (MCMC)

1. Consider a model of the form x|θ ∼ Bin(n, θ) and θ ∼ Be(1/2, 1/2). Assume that you
observe n = 10 and x = 1.

(a) Report an exact 95% (symmetric) posterior credible interval for θ (for example,
you can use the qbeta function in R).

(b) Report an approximate credible interval for θ using the Laplace approximation.

(c) Report an approximate credible interval for θ using Monte Carlo simulation.

(d) Repeat the previous calculations with n = 100, x = 10 and with n = 1000, x = 100.
Comment on the difference between all 9 situations.

2. Consider a model where x1, . . . , xn is an i.i.d. sample where xi|θ ∼ N(θ, 1) and θ ∼
Cauchy(0, 1).

(a) Develop importance sampling schemes to compute E(θ|x1, . . . , xn) using the prior
(i.e., the Cauchy(0, 1) distribution) as your importance function. Apply this
algorithm to the datasets hw3.1.dat and hw3.2.dat, and construct a histogram
of the importance weights associated to each datasets.

(b) Repeat the same exercise using a N(x̄, 1/n) distribution as your importance dis-
tribution. How could you justify this choice of importance function?

(c) Repeat the same exercise using a Student-t distribution with mean x̄ and vari-
ance 1/n as your importance distribution. How could you justify this choice of
importance function?

(d) Compare all plots and comment.

3. (Wasserman, 2003) A random variable Z has an inverse Gaussian distribution if it has
density

f(x) ∝ z−3/2exp

{
−θ1z −

θ2
z

+ 2
√
θ1θ2 + log(

√
2θ2)

}
, z > 0,

where θ1 > 0 and θ2 > 0 are parameters. It can be shown that E(Z) =
√
θ2/θ1 and

E(1/Z) =
√
θ1/θ2 + 1/(2θ2).

(a) Let θ1 = 1.5 and θ2 = 2. Draw a sample of size 1,000 using the independence-
Metropolis-Hastings method with a Gamma distribution as the proposal density
(note that in an independence-Metropolis-Hastings q(θ∗|θ) = q(θ∗)). To assess
the accuracy of the method, compare the mean of Z and 1/Z from the sample to
the theoretical means. Try different Gamma distributions to see if you can get an
accurate sample.

(b) Draw a sample of size 1,000 using the random-walk Metropolis method. Since
z > 0 we cannot just use a Normal density. Let W = log(Z). Find the density of
W. Use the random-walk Metropolis method to get a sample W1, . . . ,WM and let
Zi = eWi . Assess the accuracy of the simulation as in the previous part.
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4. Consider i.i.d. data x1, . . . , xn such that xi|ν, θ ∼ Gamma(ν, θ) where E(xi) = ν/θ,
and assign priors ν ∼ Gamma(3, 1) and θ ∼ Gamma(2, 2).

(a) Develop a Metropolis-within-Gibbs algorithm to sample from p(ν, θ|x1, . . . , xn)
using the full conditional distributions p(θ|ν, x1, . . . , xn) and p(ν|θ, x1, . . . , xn). For
the second full conditional, use a random walk proposal on log(ν).

(b) Develop a Metropolis-Hastings algorithm that jointly proposes log(ν) and log(θ)
using a Gaussian random walk centered on the current value of the parameters.
Tune the variance-covariance matrix of the proposal using a test run that proposes
the parameters independently (but evaluates acceptance jointly).

(c) Develop a Metropolis algorithm that jointly proposes log(ν) and log(θ) using in-
dependent proposals based on the Laplace approximation of the posterior distri-
bution of log(ν) and log(θ).

(d) Develop a Metropolis algorithm that jointly proposes log(ν) and log(θ) using in-
dependent proposals based on a modified version of the Laplace approximation of
the posterior distribution of log(ν) and log(θ) in which the normal distribution is
replaced by a heavy tailed distribution (such as a multivariate Cauchy).

(e) Run each of the algorithms for the dataset in hw4.1.dat and compute the effective
sample sizes associated with each parameter under each of the samplers. Also,
construct trace and autocorrelation plots. Report posterior means for each of the
parameters of interest, along with 95% symmetric credible intervals. Discuss.

5. (Robert and Casella) Consider a random effects model,

yi,j = β + ui + εi,j , i = 1 : I, j = 1 : J,

where ui ∼ N(0, σ2) and εi,j ∼ N(0, τ2). Assume a prior of the form

π(β, σ2, τ2) ∝ 1

σ2τ2
.

(a) Find the full conditional distributions: (i) π(ui|y, β, τ2, σ2); (ii) π(β|y, u, τ2, σ2);
π(σ2|y, u, β, τ2); (iii) π(τ2|y, u, β, σ2).

(b) Find π(β, τ2, σ2|y) up to a proportionality constant.

(c) Find π(σ2, τ2|y) up to a proportionality constant and show that this posterior is
not integrable since, for τ 6= 0, it behaves like σ−2 in a neighborhood of 0.

This problem shows that even though the full conditional posteriors exist and the Gibbs
sampling could be easily implemented, the joint posterior distribution does not exist.
Users should be aware of the risks of using the Gibbs sampler in situations like this!

6. (Carlin, Gelfand and Smith, 1992) Let y1, . . . , yn be a sample from a Poisson distribu-
tion for which there is a suspicion of a change point m along the observation process
where the means change, m = 1, . . . , n. Given m yi ∼ Poisson(θ), for i = 1, . . . ,m
and yi ∼ Poisson(φ), for i = m + 1, . . . , n. The model is completed with independent
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prior distributions λ ∼ Gamma(α, β), φ ∼ Gamma(γ, δ) and m uniformly distributed
over {1, . . . , n} where α, β, γ and δ are known constants. Implement a Gibbs sampling
algorithm to obtain samples from the joint posterior distribution. Run the Gibbs sam-
pler to apply this model to the data mining.r which consists of counts of coal mining
disasters in Great Britain by year from 1851 to 1962.

7. Souza (1999) considers a number of hierarchical models to describe the nutritional
pattern of pregnant women. One of the models adopted was a hierarchical regression
model where

yi,j ∼ N(αi + βiti,j , σ
2),

(αi, βi)
′|α, β ∼ N((α, β)′, diag(τ−1α , τ−1β )),

(α, β)′ ∼ N((0, 0)′, diag(P−1α , P−1β ),

prior independent scale parameters σ−2, τα and τβ ∼ Gamma(a, b), and yi,j and ti,j
are the jth weight measurement and visit time of the ith woman with j = 1 : ni and
i = 1 : I for I = 68 pregnant women. Here n =

∑I
i=1 ni = 427, Pα = Pβ = 1/1000

and a = b = 0.001. Find the full conditional distributions of α, β, τα, τβ, σ
−2, αi, βi, and

(αi, βi).
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