AMS 206B: Intermediate Bayesian Inference HOMEWORK \# 3 (Noninformative Priors and additional problems on Bayesian calculations)

1. Let (X_{1}, X_{2}, X_{3}) have trinomial distribution with density

$$
f\left(x_{1}, x_{2}, x_{3} \mid \theta_{1}, \theta_{2}\right) \propto \theta_{1}^{x_{1}} \theta_{2}^{x_{2}}\left(1-\theta_{1}-\theta_{2}\right)^{x_{3}} .
$$

Derive Jeffreys prior for $\left(\theta_{1}, \theta_{2}\right)$.
2. Robert Problem 3.9.
3. Robert Problem 3.10.
4. Robert Problem 3.31.
5. Robert Problem 3.56.
6. Let $y_{t}=\rho y_{t-1}+\epsilon_{t}, \epsilon_{t} \sim^{\text {i.i.d. }} N\left(0, \sigma^{2}\right)$. This is a popular model in time series analysis known as the autoregressive model of order one or $\operatorname{AR}(1)$.
(a) Write down the conditional likelihood given y_{1}, i.e., $f\left(y_{2}, \ldots, y_{n} \mid y_{1}, \rho, \sigma^{2}\right)$.
(b) Assume a prior of the form $\pi\left(\rho, \sigma^{2}\right) \propto 1 / \sigma^{2}$.
i. Find the joint posterior $p\left(\rho, \sigma^{2} \mid y_{1}, \ldots, y_{n}\right)$ based on the conditional likelihood.
ii. Find $p\left(\rho \mid \sigma^{2}, y_{1}, \ldots, y_{n}\right)$ and $p\left(\sigma^{2} \mid y_{1}, \ldots, y_{n}\right)$ based on the conditional likelihood.
iii. Simulate two data sets with $n=500$ observations each. One with $\rho=$ $0.95, \sigma^{2}=4$ and another one with $\rho=0.3, \sigma^{2}=4$. Fit the model above to the two data sets. Summarize your posterior results in both cases.

