AMS 206B: Intermediate Bayesian Inference HOMEWORK # 3 (Noninformative Priors and additional problems on Bayesian calculations)

1. Let (X_1, X_2, X_3) have trinomial distribution with density

$$f(x_1, x_2, x_3 | \theta_1, \theta_2) \propto \theta_1^{x_1} \theta_2^{x_2} (1 - \theta_1 - \theta_2)^{x_3}$$

Derive Jeffreys prior for (θ_1, θ_2) .

- 2. Robert Problem 3.9.
- 3. Robert Problem 3.10.
- 4. Robert Problem 3.31.
- 5. Robert Problem 3.56.
- 6. Let $y_t = \rho y_{t-1} + \epsilon_t$, $\epsilon_t \sim^{i.i.d.} N(0, \sigma^2)$. This is a popular model in time series analysis known as the autoregressive model of order one or AR(1).
 - (a) Write down the conditional likelihood given y_1 , i.e., $f(y_2, \ldots, y_n | y_1, \rho, \sigma^2)$.
 - (b) Assume a prior of the form $\pi(\rho, \sigma^2) \propto 1/\sigma^2$.
 - i. Find the joint posterior $p(\rho, \sigma^2 | y_1, \ldots, y_n)$ based on the conditional likelihood.
 - ii. Find $p(\rho|\sigma^2, y_1, \ldots, y_n)$ and $p(\sigma^2|y_1, \ldots, y_n)$ based on the conditional likelihood.
 - iii. Simulate two data sets with n = 500 observations each. One with $\rho = 0.95, \sigma^2 = 4$ and another one with $\rho = 0.3, \sigma^2 = 4$. Fit the model above to the two data sets. Summarize your posterior results in both cases.