AMS 206B: Intermediate Bayesian Inference HOMEWORK # 1 (Review and Conjugate Families)

- 1. Let $X \sim Exp(\lambda)$ where $E(X) = 1/\lambda$. What is the p.m.f. of $Y = \lfloor X \rfloor$ (the floor of X)? Do you recognize it as a distribution that you have studied in the past?
- 2. Let X_1 and X_2 be two independent random variables such that $X_i \sim Gamma(a_i, b)$ for any $a_1, a_2, b > 0$. Define $Y = X_1/(X_1 + X_2)$ and $Z = (X_1 + X_2)$.
 - (a) Find the joint p.d.f. for Y and Z and show that these two random variables are independent.
 - (b) Find the marginal p.d.f. of Z. Do you recognize this p.d.f. as belonging to some family that you know?
 - (c) Find the marginal p.d.f. of Y. Do you recognize this p.d.f. as belonging to some family that you know?
 - (d) Compute $E(Y^k)$ for any k > 0.
 - (e) What does this result imply if $a_i = b_i = 1$?
- 3. Consider three independent random variables X_1, X_2 and X_3 such that $X_i \sim Gamma(a_i, b)$. Let

$$\mathbf{Y} = (Y_1, Y_2, Y_3) = \left(\frac{X_1}{X_1 + X_2 + X_3}, \frac{X_2}{X_1 + X_2 + X_3}, \frac{X_3}{X_1 + X_2 + X_3}\right).$$

- (a) Show that $\mathbf{Y} \sim Dirichlet(a_1, a_2, a_3)$, a Dirichlet distribution.
- (b) How can this result be used to generate random variables according to a Dirichlet distribution? Write a simple function in **R** or Matlab (your choice) that takes as inputs n, the number of trivariate vectors to be generated, and $\mathbf{a} = (a1, a2, a3)$ and generates a matrix of size $n \times 3$ whose rows correspond to independent samples from a Dirichlet distribution with parameter (a1, a2, a3).
- 4. Y follows an inverse Gamma distribution with shape parameter a and scale parameter b $(Y \sim IG(a, b))$ if Y = 1/X with $X \sim Gamma(a, b)$ (assume the Gamma distribution is parameterized so that E(X) = ab.
 - (a) Find the density of Y.
 - (b) Compute $E(Y^k)$. Do you need to impose any constrain on the problem for this expectation to exists?
- 5. Y follows a lognormal distribution with parameters μ and σ^2 (denotes as $Y \sim LogN(\mu, \sigma^2)$) if $Y = \exp(X)$ where $X \sim N(\mu, \sigma^2)$.
 - (a) Find the density of Y.
 - (b) Compute the mean and the variance of Y.

- 6. Let $\mathbf{X} = (X_1, X_2, \dots, X_p)$ with $\mathbf{X} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and set $\mathbf{Z}_1 = (X_1, \dots, X_q)$ and $\mathbf{Z}_2 = (X_{q+1}, \dots, X_p)$ with 1 < q < p.
 - (a) Show that

$$\mathbf{Z}_1 | \mathbf{Z}_2 \sim N_q \left(\boldsymbol{\mu}_1 + \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} (\mathbf{Z}_2 - \boldsymbol{\mu}_2), \boldsymbol{\Sigma}_{11} - \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21} \right),$$

where μ_k and Σ_{kl} denote the blocks of μ and Σ where the rows correspond to the variables in \mathbf{Z}_k and the columns to the variables in \mathbf{Z}_l .

(b) If you let $\Omega = \Sigma^{-1}$, show that the previous expression can also be written as

 $\mathbf{Z}_1 | \mathbf{Z}_2 \sim N_q(\boldsymbol{\mu}_1 - \boldsymbol{\Omega}_{11}^{-1} \boldsymbol{\Omega}_{12}(\mathbf{Z}_2 - \boldsymbol{\mu}_2), \boldsymbol{\Omega}_{11}^{-1}).$

(Hint: part (b) is a problem in linear algebra, you will likely need to consult a book for results on inverses and determinant of block-partitioned matrices).

- 7. Let $Y|X \sim Poisson(X)$ and let $X \sim Exponential(\lambda)$. What is the marginal distribution of Y?
- 8. Let $X|Y \sim Binomial(Y, \pi)$, and let $Y \sim Poisson(\lambda)$.
 - (a) Show that $E(X) = E(E(X|Y)) = \lambda \pi$, and that $V(X) = E(V(X|Y)) + V(E(X|Y)) = \lambda \pi$.
 - (b) Show that $X \sim Poisson(\lambda \pi)$ and $Y X|X \sim Poisson[\lambda(1-\pi)]$.
- 9. Let U, V and W be independent normal random variables with $U \sim N(\mu, 1)$, $V \sim N(\mu, 1)$ and $W \sim N(0, 1)$. Let $X_1 = U + W$ and $X_2 = V + W$, i.e., a common W contaminates U and V. Show that $X = (X_1, X_2)$ has a density in the exponential family.
- 10. Assume that $W \sim N(\mu, 1)$. Suppose that W is physically observed only when its value is inside the interval [a, b]. Then, the variable X that is truly observed is a truncated normal random variable in the interval [a, b]. Show that $f(x|\mu)$ is in the exponential family.
- 11. Let $X \sim N(\mu, \sigma^2)$ with μ and σ unknown. Show that $f(x|\theta)$ with $\theta = (\mu, \sigma)$ is in the exponential family.
- 12. Show that if $X \sim Exponential(\beta)$, then
 - (a) $Y = X^{1/\gamma}$ has a Weibull distribution with parameters γ and β with $\gamma > 0$ a constant.
 - (b) $Y = (2X/\beta)^{1/2}$ has the Rayleigh distribution.

For both parts, derive the form of the p.d.f., verify that is a p.d.f., and calculate the mean and the variance.

13. (Robert) Let $x \sim N(\theta, \sigma^2)$, $y \sim N(\rho x, \sigma^2)$ with ρ known. Assume a prior of the form $\pi(\theta, \sigma^2) = 1/\sigma^2$. Find the predictive density of y given x.

- 14. (Robert) If $y \sim Binomial(n, \theta)$ and $x \sim Binomial(m, \theta)$, and $\theta \sim Beta(\alpha, \beta)$. Find the predictive distribution of y given x.
- 15. (Robert) Give the posterior and the marginal distributions in the following cases:
 - (a) $x|\sigma \sim N(0,\sigma^2)$ and $1/\sigma^2 \sim Gamma(1,2)$.
 - (b) $x|p \sim Negative Binomial(10, p), p \sim Beta(1/2, 1/2).$
- 16. Let $X|\theta \sim N(\theta, 1)$. Suppose your prior is such that θ is $N(\mu, 1)$ or $N(-\mu, 1)$ with equal probabilities. Write the prior distribution and find the posterior after observing X = x. Show that

$$E(\theta|x) = \frac{x}{2} + \frac{\mu}{2} \frac{1 - \exp(-\mu x)}{1 + \exp(-\mu x)}$$

and draw a graph of $E(\theta|x)$ as a function of x.

- 17. Let $X = (X_1, \ldots, X_k)'$ be a random vector with a multinomial distribution with index n and probabilities $\theta_1, \ldots, \theta_k$ such that $\sum_{i=1}^k X_i = n$ and $\sum_{i=1}^k \theta_i = 1$.
 - (a) Show that the p.d.f. of X (the multinomial p.d.f.) is in the exponential family. Find the natural parameterization and the natural parameters.
 - (b) Find a conjugate family of distributions using the natural parameterization.
- 18. Let (X_1, X_2, X_3) , be a vector with pmf

$$\frac{n!}{\prod_{i=1}^{3} x_i!} \prod_{i=1}^{3} p_i^{x_i}, \ x_i \ge 0, \ x_1 + x_2 + x_3 = n,$$

where $p_1 = \theta^2$, $p_2 = 2\theta(1 - \theta)$, $p_3 = (1 - \theta)^2$, and $0 \le \theta \le 1$.

- (a) Verify if this distribution belongs to the exponential family with K parameters. If this is true, what is K?
- (b) Obtain a sufficient statistic for θ .