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10-705/36-705: Intermediate Statistics, Fall 2010
Professor Larry Wasserman
Office Baker Hall 228 A
Email larry@stat.cmu.edu
Phone 268-8727
Office hours Mondays, 1:30-2:30
Class Time Mon-Wed-Fri 12:30 - 1:20
Location GHC 4307
TAs Wanjie Wang and Xiaolin Yang

Website http://www.stat.cmu.edu/∼larry/=stat705

Objective

This course will cover the fundamentals of theoretical statistics. Topics include: point and in-
terval estimation, hypothesis testing, data reduction, convergence concepts, Bayesian inference,
nonparametric statistics and bootstrap resampling. We will cover Chapters 5 – 10 from Casella
and Berger plus some supplementary material. This course is excellent preparation for advanced
work in Statistics and Machine Learning.

Textbook
Casella, G. and Berger, R. L. (2002). Statistical Inference, 2nd ed.

Background

I assume that you are familiar with the material in Chapters 1 - 4 of Casella and Berger.

Other Recommended Texts
Wasserman, L. (2004). All of Statistics: A concise course in statistical inference.
Bickel, P. J. and Doksum, K. A. (1977). Mathematical Statistics.
Rice, J. A. (1977). Mathematical Statistics and Data Analysis, Second Edition.

Grading
10% : Test I (Sept. 16) on the material of Chapters 1–4
20% : Test II (October 14)
20% : Test III (November 7)
30% : Final Exam (Date set by the University)
20% : Homework

1



Exams
All exams are closed book. Do NOT buy a plane ticket until the final exam has been scheduled.

Homework
Homework assigments will be posted on the web. Hand in homework to Mari Alice Mcshane, 228
Baker Hall by 3 pm Thursday. No late homework.

Reading and Class Notes
Class notes will be posted on the web regularly. Bring a copy to class. The notes are not meant to
be a substitute for the book and hence are generally quite terse. Read both the notes and the text
before lecture. Sometimes I will cover topics from other sources.

Group Work
You are encouraged to work with others on the homework. But write-up your final solutions on
your own.

Course Outline

1. Quick Review of Chapters 1-4
2. Inequalities
3. Vapnik-Chervonenkis Theory
4. Convergence
5. Sufficiency
6. Likelihood
7. Point Estimation
8. Minimax Theory
9. Asymptotics

10. Robustness
11. Hypothesis Testing
12. Confidence Intervals
13. Nonparametric Inference
14. Prediction and Classification
15. The Bootstrap
16. Bayesian Inference
17. Markov Chain Monte Carlo
18. Model Selection
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Lecture Notes 1
Quick Review of Basic Probability
(Casella and Berger Chapters 1-4)

1 Probability Review

Chapters 1-4 are a review. I will assume you have read and understood Chapters
1-4. Let us recall some of the key ideas.

1.1 Random Variables

A random variable is a map X from a probability space Ω to R. We write

P (X ∈ A) = P ({ω ∈ Ω : X(ω) ∈ A})
and we write X ∼ P to mean that X has distribution P . The cumulative distribution
function (cdf) of X is

FX(x) = F (x) = P (X ≤ x).

If X is discrete, its probability mass function (pmf) is

pX(x) = p(x) = P (X = x).

If X is continuous, then its probability density function function (pdf) satisfies

P (X ∈ A) =

∫

A

pX(x)dx =

∫

A

p(x)dx

and pX(x) = p(x) = F ′(x). The following are all equivalent:

X ∼ P, X ∼ F, X ∼ p.

Suppose that X ∼ P and Y ∼ Q. We say that X and Y have the same distribution if

P (X ∈ A) = Q(Y ∈ A)

for all A. In other words, P = Q. In that case we say that X and Y are equal in

distribution and we write X
d
= Y . It can be shown that X

d
= Y if and only if

FX(t) = FY (t) for all t.

1.2 Expected Values

The mean or expected value of g(X) is

E (g(X)) =

∫
g(x)dF (x) =

∫
g(x)dP (x) =

{ ∫∞
−∞ g(x)p(x)dx if X is continuous∑
j g(xj)p(xj) if X is discrete.
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Recall that:

1. E(
∑k

j=1 cjgj(X)) =
∑k

j=1 cjE(gj(X)).

2. If X1, . . . , Xn are independent then

E

(
n∏

i=1

Xi

)
=
∏

i

E (Xi) .

3. We often write µ = E(X).

4. σ2 = Var (X) = E ((X − µ)2) is the Variance.

5. Var (X) = E (X2)− µ2.

6. If X1, . . . , Xn are independent then

Var

(
n∑

i=1

aiXi

)
=
∑

i

a2
iVar (Xi) .

7. The covariance is

Cov(X, Y ) = E((X − µx)(Y − µy)) = E(XY )− µXµY

and the correlation is ρ(X, Y ) = Cov(X, Y )/σxσy. Recall that −1 ≤ ρ(X, Y ) ≤ 1.

The conditional expectation of Y given X is the random variable E(Y |X) whose value,
when X = x is

E(Y |X = x) =

∫
y p(y|x)dy

where p(y|x) = p(x, y)/p(x). The Law of Total Expectation or Law of Iterated Expectation:

E(Y ) = E
[
E(Y |X)

]
=

∫
E(Y |X = x)pX(x)dx.

The Law of Total Variance is

Var(Y ) = Var
[
E(Y |X)

]
+ E

[
Var(Y |X)

]
.

The nth moment is E (Xn) and the nth central moment is E ((X − µ)n). The moment
generating function (mgf) is

MX(t) = E
(
etX
)
.

Then, M
(n)
X (t)|t=0 = E (Xn) .

If MX(t) = MY (t) for all t in an interval around 0 then X
d
= Y .
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1.3 Exponential Families

A family of distributions {p(x; θ) : θ ∈ Θ} is called an exponential family if

p(x; θ) = h(x)c(θ) exp

{
k∑

i=1

wi(θ)ti(x)

}
.

Example 1 X ∼ Poisson(λ) is exponential family since

p(x) = P (X = x) =
e−λλx

x!
=

1

x!
e−λ exp{log λ · x}.

Example 2 X ∼ U (0, θ) is not an exponential family. The density is

pX(x) =
1

θ
I(0,θ)(x)

where IA(x) = 1 if x ∈ A and 0 otherwise.

We can rewrite an exponential family in terms of a natural parameterization. For k = 1
we have

p(x; η) = h(x) exp{ηt(x)− A(η)}
where

A(η) = log

∫
h(x) exp{ηt(x)}dx.

For example a Poisson can be written as

p(x; η) = exp{ηx− eη}/x!

where the natural parameter is η = log λ.
Let X have an exponential family distribution. Then

E (t(X)) = A′(η), Var (t(X)) = A′′(η).

Practice Problem: Prove the above result.

1.4 Transformations

Let Y = g(X). Then

FY (y) = P(Y ≤ y) = P(g(X) ≤ y) =

∫

A(y)

pX(x)dx

where
Ay = {x : g(x) ≤ y}.

Then pY (y) = F ′Y (y).
If g is monotonic, then

pY (y) = pX(h(y))

∣∣∣∣
dh(y)

dy

∣∣∣∣
where h = g−1.
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Example 3 Let pX(x) = e−x for x > 0. Hence FX(x) = 1 − e−x. Let Y = g(X) = logX.
Then

FY (y) = P (Y ≤ y) = P (log(X) ≤ y)

= P (X ≤ ey) = FX(ey) = 1− e−ey

and pY (y) = eye−e
y

for y ∈ R.

Example 4 Practice problem. Let X be uniform on (−1, 2) and let Y = X2. Find the
density of Y .

Let Z = g(X, Y ). For exampe, Z = X + Y or Z = X/Y . Then we find the pdf of Z as
follows:

1. For each z, find the set Az = {(x, y) : g(x, y) ≤ z}.

2. Find the CDF

FZ(z) = P (Z ≤ z) = P (g(X, Y ) ≤ z) = P ({(x, y) : g(x, y) ≤ z}) =

∫ ∫

Az

pX,Y (x, y)dxdy.

3. The pdf is pZ(z) = F ′Z(z).

Example 5 Practice problem. Let (X, Y ) be uniform on the unit square. Let Z = X/Y .
Find the density of Z.

1.5 Independence

Recall that X and Y are independent if and only if

P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B)

for all A and B.

Theorem 6 Let (X, Y ) be a bivariate random vector with pX,Y (x, y). X and Y are inde-
pendent iff pX,Y (x, y) = pX(x)pY (y).

X1, . . . , Xn are independent if and only if

P(X1 ∈ A1, . . . , Xn ∈ An) =
n∏

i=1

P(Xi ∈ Ai).

Thus, pX1,...,Xn(x1, . . . , xn) =
∏n

i=1 pXi(xi).
If X1, . . . , Xn are independent and identically distributed we say they are iid (or that

they are a random sample) and we write

X1, . . . , Xn ∼ P or X1, . . . , Xn ∼ F or X1, . . . , Xn ∼ p.
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1.6 Important Distributions

X ∼ N(µ, σ2) if

p(x) =
1

σ
√

2π
e−(x−µ)2/(2σ2).

If X ∈ Rd then X ∼ N(µ,Σ) if

p(x) =
1

(2π)d/2|Σ| exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

X ∼ χ2
p if X =

∑p
j=1 Z

2
j where Z1, . . . , Zp ∼ N(0, 1).

X ∼ Bernoulli(θ) if P(X = 1) = θ and P(X = 0) = 1− θ and hence

p(x) = θx(1− θ)1−x x = 0, 1.

X ∼ Binomial(θ) if

p(x) = P(X = x) =

(
n

x

)
θx(1− θ)n−x x ∈ {0, . . . , n}.

X ∼ Uniform(0, θ) if p(x) = I(0 ≤ x ≤ θ)/θ.

1.7 Sample Mean and Variance

The sample mean is

X =
1

n

∑

i

Xi,

and the sample variance is

S2 =
1

n− 1

∑

i

(Xi −X)2.

Let X1, . . . , Xn be iid with µ = E(Xi) = µ and σ2 = Var(Xi) = σ2. Then

E(X) = µ, Var(X) =
σ2

n
, E(S2) = σ2.

Theorem 7 If X1, . . . , Xn ∼ N(µ, σ2) then

(a) X ∼ N(µ, σ
2

n
)

(b) (n−1)S2

σ2 ∼ χ2
n−1

(c) X and S2 are independent
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1.8 Delta Method

If X ∼ N(µ, σ2), Y = g(X) and σ2 is small then

Y ≈ N(g(µ), σ2(g′(µ))2).

To see this, note that

Y = g(X) = g(µ) + (X − µ)g′(µ) +
(X − µ)2

2
g′′(ξ)

for some ξ. Now E((X − µ)2) = σ2 which we are assuming is small and so

Y = g(X) ≈ g(µ) + (X − µ)g′(µ).

Thus
E(Y ) ≈ g(µ), Var(Y ) ≈ (g′(µ))2σ2.

Hence,
g(X) ≈ N

(
g(µ), (g′(µ))2σ2

)
.

Appendix: Useful Facts

Facts about sums

• ∑n
i=1 i = n(n+1)

2
.

• ∑n
i=1 i

2 = n(n+1)(2n+1)
6

.

• Geometric series: a+ ar + ar2 + . . . = a
1−r , for 0 < r < 1.

• Partial Geometric series a+ ar + ar2 + . . .+ arn−1 = a(1−rn)
1−r .

• Binomial Theorem

n∑

x=0

(
n

x

)
ax = (1 + a)n,

n∑

x=0

(
n

x

)
axbn−x = (a+ b)n.

• Hypergeometric identity

∞∑

x=0

(
a

x

)(
b

n− x

)
=

(
a+ b

n

)
.
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Common Distributions

Discrete

Uniform

• X ∼ U (1, . . . , N)

• X takes values x = 1, 2, . . . , N

• P (X = x) = 1/N

• E (X) =
∑

x xP (X = x) =
∑

x x
1
N

= 1
N
N(N+1)

2
= (N+1)

2

• E (X2) =
∑

x x
2P (X = x) =

∑
x x

2 1
N

= 1
N
N(N+1)(2N+1)

6

Binomial

• X ∼ Bin(n, p)

• X takes values x = 0, 1, . . . , n

• P (X = x) =
(
n
x

)
px(1− p)n−x

Hypergeometric

• X ∼ Hypergeometric(N,M,K)

• P (X = x) =
(Mx )(N−M

K−x )
(NK)

Geometric

• X ∼ Geom(p)

• P (X = x) = (1− p)x−1p, x = 1, 2, . . .

• E (X) =
∑

x x(1− p)x−1 = p
∑

x
d
dp

(−(1− p)x) = p p
p2

= 1
p
.

Poisson

• X ∼ Poisson(λ)

• P (X = x) = e−λλx
x!

x = 0, 1, 2, . . .

• E (X) = Var (X) = λ

• MX(t) =
∑∞

x=0 e
tx e−λλx

x!
= e−λ

∑∞
x=0

(λet)
x

x!
= e−λeλe

t
= eλ(et−1).

7



• E (X) = λeteλ(et−1)|t=0 = λ.

• Use mgf to show: if X1 ∼ Poisson(λ1), X2 ∼ Poisson(λ2), independent then Y =
X1 +X2 ∼ Poisson(λ1 + λ2).

Continuous Distributions

Normal

• X ∼ N(µ, σ2)

• p(x) = 1√
2πσ

exp{ −1
2σ2 (x− µ)2}, x ∈ R

• mgf MX(t) = exp{µt+ σ2t2/2}.

• E (X) = µ

• Var (X) = σ2.

• e.g., If Z ∼ N(0, 1) and X = µ+ σZ, then X ∼ N(µ, σ2). Show this...

Proof.

MX(t) = E
(
etX
)

= E
(
et(µ+σZ)

)
= etµE

(
etσZ

)

= etµMZ(tσ) = etµe(tσ)2/2 = etµ+t2σ2/2

which is the mgf of a N(µ, σ2).

Alternative proof:

FX(x) = P (X ≤ x) = P (µ+ σZ ≤ x) = P

(
Z ≤ x− µ

σ

)

= FZ

(
x− µ
σ

)

pX(x) = F ′X(x) = pZ

(
x− µ
σ

)
1

σ

=
1√
2π

exp

{
−1

2

(
x− µ
σ

)2
}

1

σ

=
1√
2πσ

exp

{
−1

2

(
x− µ
σ

)2
}
,

which is the pdf of a N(µ, σ2). �
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Gamma

• X ∼ Γ(α, β).

• pX(x) = 1
Γ(α)βα

xα−1e−x/β, x a positive real.

• Γ(α) =
∫∞

0
1
βα
xα−1e−x/βdx.

• Important statistical distribution: χ2
p = Γ(p

2
, 2).

• χ2
p =

∑p
i=1 X

2
i , where Xi ∼ N(0, 1), iid.

Exponential

• X ∼ exponen(β)

• pX(x) = 1
β
e−x/β, x a positive real.

• exponen(β) = Γ(1, β).

• e.g., Used to model waiting time of a Poisson Process. Suppose N is the number of
phone calls in 1 hour and N ∼ Poisson(λ). Let T be the time between consecutive
phone calls, then T ∼ exponen(1/λ) and E (T ) = (1/λ).

• If X1, . . . , Xn are iid exponen(β), then
∑

iXi ∼ Γ(n, β).

• Memoryless Property: If X ∼ exponen(β), then

P (X > t+ s|X > t) = P (X > s).

Linear Regression

Model the response (Y ) as a linear function of the parameters and covariates (x) plus random
error (ε).

Yi = θ(x, β) + εi

where
θ(x, β) = Xβ = β0 + β1x1 + β2x2 + . . .+ βkxk.
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Generalized Linear Model

Model the natural parameters as linear functions of the the covariates.
Example: Logistic Regression.

P (Y = 1|X = x) =
eβ

T x

1 + eβT x
.

In other words, Y |X = x ∼ Bin(n, p(x)) and

η(x) = βTx

where

η(x) = log

(
p(x)

1− p(x)

)
.

Logistic Regression consists of modelling the natural parameter, which is called the log odds
ratio, as a linear function of covariates.

Location and Scale Families, CB 3.5

Let p(x) be a pdf.

Location family : {p(x|µ) = p(x− µ) : µ ∈ R}

Scale family :

{
p(x|σ) =

1

σ
f
(x
σ

)
: σ > 0

}

Location− Scale family :

{
p(x|µ, σ) =

1

σ
f

(
x− µ
σ

)
: µ ∈ R, σ > 0

}

(1) Location family. Shifts the pdf.

e.g., Uniform with p(x) = 1 on (0, 1) and p(x− θ) = 1 on (θ, θ + 1).
e.g., Normal with standard pdf the density of a N(0, 1) and location family pdf N(θ, 1).
(2) Scale family. Stretches the pdf.

e.g., Normal with standard pdf the density of a N(0, 1) and scale family pdf N(0, σ2).
(3) Location-Scale family. Stretches and shifts the pdf.

e.g., Normal with standard pdf the density of a N(0, 1) and location-scale family pdf
N(θ, σ2), i.e., 1

σ
p(x−µ

σ
) .
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Multinomial Distribution

The multivariate version of a Binomial is called a Multinomial. Consider drawing a ball
from an urn with has balls with k different colors labeled “color 1, color 2, . . . , color k.”
Let p = (p1, p2, . . . , pk) where

∑
j pj = 1 and pj is the probability of drawing color j. Draw

n balls from the urn (independently and with replacement) and let X = (X1, X2, . . . , Xk)
be the count of the number of balls of each color drawn. We say that X has a Multinomial
(n, p) distribution. The pdf is

p(x) =

(
n

x1, . . . , xk

)
px11 . . . pxkk .

Multivariate Normal Distribution

We now define the multivariate normal distribution and derive its basic properties. We
want to allow the possibility of multivariate normal distributions whose covariance matrix is
not necessarily positive definite. Therefore, we cannot define the distribution by its density
function. Instead we define the distribution by its moment generating function. (The reader
may wonder how a random vector can have a moment generating function if it has no density
function. However, the moment generating function can be defined using more general types
of integration. In this book, we assume that such a definition is possible but find the
moment generating function by elementary means.) We find the density function for the
case of positive definite covariance matrix in Theorem 5.

Lemma 8 (a). Let X = AY + b Then

MX(t) = exp (b′t)MY (A′t).

(b). Let c be a constant. Let Z = cY. Then

MZ(t) = MY (ct).

(c). Let

Y =

(
Y1

Y2

)
, t =

(
t1

t2

)

Then

MY1
(t1) = MY

(
t1

0

)
.

(d). Y1 and Y2 are independent if and only if

MY

(
t1

t2

)
= MY

(
t1

0

)
MY

(
0

t2

)
.
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We start with Z1, . . . , Zn independent random variables such that Zi ∼ N1(0, 1). Let Z
= (Z1, . . . , Zn)′. Then

E(Z) = 0, cov(Z) = I, MZ(t) =
∏

exp
t2i
2

= exp
t′t

2
. (1)

Let µ be an n× 1 vector and A an n× n matrix. Let Y = AZ + µ. Then

E(Y) = µ cov(Y) = AA′. (2)

Let Σ = AA′. We now show that the distribution of Y depends only on µ and Σ. The
moment generating function MY(t) is given by

MY(t) = exp(µ′t)MZ(A′t) = exp

(
µ′t +

t′(A′A)t

2

)
= exp

(
µ′t +

t′Σt

2

)
.

With this motivation in mind, let µ be an n×1 vector, and let Σ be a nonnegative definite n×n
matrix. Then we say that the n-dimensional random vector Y has an n-dimensional normal
distribution with mean vector µ, and covariance matrix Σ, if Y has moment generating
function

MY(t) = exp

(
µ′t +

t′Σt

2

)
. (3)

We write Y ∼ Nn(µ,Σ). The following theorem summarizes some elementary facts about
multivariate normal distributions.

Theorem 9 (a). If Y ∼ Nn(µ,Σ), then E(Y) = µ, cov(Y) = Σ.
(b). If Y ∼ Nn(µ,Σ), c is a scalar, then cY ∼ Nn(cµ, c2Σ).
(c). Let Y ∼ Nn(µ,Σ). If A is p× n, b is p× 1, then AY + b ∼ Np(Aµ+ b,AΣA′).
(d). Let µ be any n× 1 vector, and let Σ be any n×n nonnegative definite matrix. Then

there exists Y such that Y ∼ Nn(µ,Σ).

Proof. (a). This follows directly from (2) above.
(b) and (c). Homework.
(d). Let Z1, . . . , Zn be independent, Zi ∼ N(0, 1). Let Z = (Z1, . . . , Zn)′. It is easily

verified that Z ∼ Nn(0, I). Let Y = Σ1/2Z + µ. By part b, above,

Y ∼ Nn(Σ1/20 + µ,Σ).

�
We have now shown that the family of normal distributions is preserved under linear

operations on the random vectors. We now show that it is preserved under taking marginal
and conditional distributions.
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Theorem 10 Suppose that Y ∼ Nn(µ,Σ). Let

Y =

(
Y1

Y2

)
, µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

where Y1 and µ1 are p× 1, and Σ11 is p× p.
(a). Y1 ∼ Np(µ1,Σ11),Y2 ∼ Nn−p(µ2,Σ22).
(b). Y1 and Y2 are independent if and only if Σ12 = 0.
(c). If Σ22 > 0, then the condition distribution of Y1 given Y2 is

Y1|Y2 ∼ Np(µ1 + Σ12Σ−1
22 (Y2 − µ2),Σ11 − Σ12Σ−1

22 Σ21).

Proof. (a). Let t′ = (t′1, t
′
2) where t1 is p× 1. The joint moment generating function of

Y1 and Y2 is

MY(t) = exp(µ′1t1 + µ′2t2 +
1

2
(t′1Σ11t1 + t′1Σ12t2 + t′2Σ21t1 + t′2Σ22t2)).

Therefore,

MY

(
t1

0

)
= exp(µ′1t1 +

1

2
t′1Σ11t1), MY

(
0

t2

)
= exp(µ′2t2 +

1

2
t′2Σ22t2).

By Lemma 1c, we see that Y1 ∼ Np(µ1,Σ11),Y2 ∼ Nn−p(µ2,Σ22).
(b). We note that

MY(t) = MY

(
t1

0

)
MY

(
0

t2

)

if and only if
t′1Σ12t2 + t′2Σ21t1 = 0.

Since Σ is symmetric and t′2Σ21t1 is a scalar, we see that t′2Σ21t1 = t′1Σ12t2.
Finally, t′Σ12t2 = 0 for all t1 ∈ Rp, t2 ∈ Rn−p if and only if Σ12 = 0, and the result follows
from Lemma 1d.

(c). We first find the joint distribution of

X = Y1 − Σ12Σ−1
22 Y2 and Y2.

(
X

Y2

)
=

(
I − Σ12Σ−1

22

0 I

)(
Y1

Y2

)

Therefore, by Theorem 2c, the joint distribution of X and Y2 is
(
X

Y2

)
∼ Nn

((
µ1 − Σ12Σ−1

22 µ2

µ2

)
,

(
Σ11 − Σ12Σ−1

22 Σ21 0

0 Σ22

))

and hence X and Y2 are independent. Therefore, the conditional distribution of X given Y2

is the same as the marginal distribution of X,

X|Y2 ∼ Np(µ1 − Σ12Σ−1
22 µ2,Σ11 − Σ12Σ−1

22 Σ21).
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Since Y2 is just a constant in the conditional distribution of X given Y2 we have, by Theorem
2c, that the conditional distribution of Y1 = X + Σ12Σ−1

22 Y2 given Y2 is

Y1|Y2 ∼ Np(µ1 − Σ12Σ−1
22 µ2 + Σ12Σ−1

22 Y2,Σ11 − Σ12Σ−1
22 Σ21)

Note that we need Σ22 > 0 in part c so that Σ−1
22 exists. �

Lemma 11 Let Y ∼ Nn(µ, σ2I), where Y′ = (Y1, . . . , Yn), µ′ = (µ1, . . . , µn) and σ2 > 0 is a
scalar. Then the Yi are independent, Yi ∼ N1(µ, σ2) and

||Y||2
σ2

=
Y′Y

σ2
∼ χ2

n

(
µ′µ

σ2

)
.

Proof. Let Yi be independent, Yi ∼ N1(µi, σ
2). The joint moment generating function

of the Yi is

MY(t) =
n∏

i=1

(exp(µiti +
1

2
σ2t2i )) = exp(µ′t +

1

2
σ2t′t)

which is the moment generating function of a random vector that is normally distributed
with mean vector µ and covariance matrix σ2I. Finally, Y′Y = ΣY 2

i , µ
′µ = Σµ2

i and
Yi/σ ∼ N1(µi/σ, 1). Therefore Y′Y/σ2 ∼ χ2

n(µ′µ/σ2) by the definition of the noncentral χ2

distribution. �
We are now ready to derive the nonsingular normal density function.

Theorem 12 Let Y ∼ Nn(µ,Σ), with Σ > 0. Then Y has density function

pY(y) =
1

(2π)n/2|Σ|1/2 exp

(
−1

2
(y− µ)′Σ−1(y− µ)

)
.

Proof. We could derive this by finding the moment generating function of this density
and showing that it satisfied (3). We would also have to show that this function is a density
function. We can avoid all that by starting with a random vector whose distribution we
know. Let

Z ∼ Nn(0, I). Z = (Z1, . . . , Zn)′.

Then the Zi are independent and Zi ∼ N1(0, 1), by Lemma 4. Therefore, the joint density
of the Zi is

pZ(z) =
n∏

i=1

1

(2π)1/2
exp

(
−1

2
z2
i

)
=

1

(2π)n/2
exp

(
−1

2
z′z

)
.

Let Y = Σ1/2Z + µ. By Theorem 2c, Y ∼ Nn(µ,Σ). Also Z = Σ−1/2(Y − µ), and the
transformation from Z to Y is therefore invertible. Furthermore, the Jacobian of this inverse
transformation is just |Σ−1/2| = |Σ|−1/2. Hence the density of Y is

pY(y) = pZ(Σ−1/2(y− µ))
1

|Σ|1/2

=
1

|Σ|1/2(2π)n/2
exp

(
−1

2
(y− µ)′Σ−1(y− µ)

)
.

14



�
We now prove a result that is useful later in the book and is also the basis for Pearson’s

χ2 tests.

Theorem 13 Let Y ∼ Nn(µ,Σ),Σ > 0. Then
(a). Y′Σ−1Y ∼ χ2

n(µ′Σ−1µ).
(b). (Y− µ)′Σ−1(Y− µ) ∼ χ2

n(0).

Proof. (a). Let Z = Σ−1/2Y ∼ Nn(Σ−1/2µ, I). By Lemma 4, we see that

Z′Z = Y′Σ−1Y ∼ χ2
n(µ′Σ−1µ).

(b). Follows fairly directly. �

The Spherical Normal

For the first part of this book, the most important class of multivariate normal distribution
is the class in which

Y ∼ Nn(µ, σ2I).

We now show that this distribution is spherically symmetric about µ. A rotation about µ is
given by X = Γ(Y − µ) + µ, where Γ is an orthogonal matrix (i.e., ΓΓ′ = I). By Theorem
2, X ∼ Nn(µ, σ2I), so that the distribution is unchanged under rotations about µ. We
therefore call this normal distribution the spherical normal distribution. If σ2 = 0, then
P (Y = µ) = 1. Otherwise its density function (by Theorem 4) is

pY(y) =
1

(2π)n/2σn
exp

(
− 1

2σ2
||y− µ||2

)
.

By Lemma 4, we note that the components of Y are independently normally distributed
with common variance σ2. In fact, the spherical normal distribution is the only multivariate
distribution with independent components that is spherically symmetric.
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Lecture Notes 2

1 Probability Inequalities

Inequalities are useful for bounding quantities that might otherwise be hard to compute.
They will also be used in the theory of convergence.

Theorem 1 (The Gaussian Tail Inequality) Let X ∼ N(0, 1). Then

P(|X| > ε) ≤ 2e−ε
2/2

ε
.

If X1, . . . , Xn ∼ N(0, 1) then

P(|Xn| > ε) ≤ 1√
nε
e−nε

2/2.

Proof. The density of X is φ(x) = (2π)−1/2e−x
2/2. Hence,

P(X > ε) =

∫ ∞

ε

φ(s)ds ≤ 1

ε

∫ ∞

ε

s φ(s)ds

= −1

ε

∫ ∞

ε

φ′(s)ds =
φ(ε)

ε
≤ e−ε

2/2

ε
.

By symmetry,

P(|X| > ε) ≤ 2e−ε
2/2

ε
.

Now let X1, . . . , Xn ∼ N(0, 1). Then Xn = n−1
∑n

i=1Xi ∼ N(0, 1/n). Thus, Xn
d
= n−1/2Z

where Z ∼ N(0, 1) and

P(|Xn| > ε) = P(n−1/2|Z| > ε) = P(|Z| > √n ε) ≤ 1√
nε
e−nε

2/2.

�
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Theorem 2 (Markov’s inequality) Let X be a non-negative random variable and suppose
that E(X) exists. For any t > 0,

P(X > t) ≤ E(X)

t
. (1)

Proof. Since X > 0,

E(X) =

∫ ∞

0

x p(x)dx =

∫ t

0

x p(x)dx+

∫ ∞

t

xp(x)dx

≥
∫ ∞

t

x p(x)dx ≥ t

∫ ∞

t

p(x)dx = tP(X > t).

�

Theorem 3 (Chebyshev’s inequality) Let µ = E(X) and σ2 = Var(X). Then,

P(|X − µ| ≥ t) ≤ σ2

t2
and P(|Z| ≥ k) ≤ 1

k2
(2)

where Z = (X − µ)/σ. In particular, P(|Z| > 2) ≤ 1/4 and P(|Z| > 3) ≤ 1/9.

Proof. We use Markov’s inequality to conclude that

P(|X − µ| ≥ t) = P(|X − µ|2 ≥ t2) ≤ E(X − µ)2

t2
=
σ2

t2
.

The second part follows by setting t = kσ. �

If X1, . . . , Xn ∼ Bernoulli(p) then and Xn = n−1
∑n

i=1Xi Then, Var(Xn) = Var(X1)/n =
p(1− p)/n and

P(|Xn − p| > ε) ≤ Var(Xn)

ε2
=
p(1− p)
nε2

≤ 1

4nε2

since p(1− p) ≤ 1
4

for all p.

2 Hoeffding’s Inequality

Hoeffding’s inequality is similar in spirit to Markov’s inequality but it is a sharper inequality.
We begin with the following important result.

Lemma 4 Supppose that E(X) = 0 and that a ≤ X ≤ b. Then

E(etX) ≤ et
2(b−a)2/8.
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Recall that a function g is convex if for each x, y and each α ∈ [0, 1],

g(αx+ (1− α)y) ≤ αg(x) + (1− α)g(y).

Proof. Since a ≤ X ≤ b, we can write X as a convex combination of a and b, namely,
X = αb+ (1− α)a where α = (X − a)/(b− a). By the convexity of the function y → ety we
have

etX ≤ αetb + (1− α)eta =
X − a
b− a e

tb +
b−X
b− a e

ta.

Take expectations of both sides and use the fact that E(X) = 0 to get

EetX ≤ − a

b− ae
tb +

b

b− ae
ta = eg(u) (3)

where u = t(b − a), g(u) = −γu + log(1 − γ + γeu) and γ = −a/(b − a). Note that
g(0) = g′(0) = 0. Also, g

′′
(u) ≤ 1/4 for all u > 0. By Taylor’s theorem, there is a ξ ∈ (0, u)

such that

g(u) = g(0) + ug
′
(0) +

u2

2
g
′′
(ξ) =

u2

2
g
′′
(ξ) ≤ u2

8
=
t2(b− a)2

8
.

Hence, EetX ≤ eg(u) ≤ et
2(b−a)2/8. �

Next, we need to use Chernoff’s method.

Lemma 5 Let X be a random variable. Then

P(X > ε) ≤ inf
t≥0

e−tε E(etX).

Proof. For any t > 0,

P(X > ε) = P(eX > eε) = P(etX > etε) ≤ e−tεE(etX).

Since this is true for every t ≥ 0, the result follows. �

Theorem 6 (Hoeffding’s Inequality) Let Y1, . . . , Yn be iid observations such that E(Yi) =
µ and a ≤ Yi ≤ b where a < 0 < b. Then, for any ε > 0,

P
(
|Y n − µ| ≥ ε

)
≤ 2e−2nε

2/(b−a)2 . (4)

Proof. Without los of generality, we asume that µ = 0. First we have

P(|Y n| ≥ ε) = P(Y n ≥ ε) + P(Y n ≤ −ε)
= P(Y n ≥ ε) + P(−Y n ≥ ε).
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Next we use Chernoff’s method. For any t > 0, we have, from Markov’s inequality, that

P(Y n ≥ ε) = P

(
n∑

i=1

Yi ≥ nε

)
= P

(
e

Pn
i=1 Yi ≥ enε

)

= P
(
et

Pn
i=1 Yi ≥ etnε

)
≤ e−tnεE

(
et

Pn
i=1 Yi

)

= e−tnε
∏

i

E(etYi) = e−tnε(E(etYi))n.

From Lemma 4, E(etYi) ≤ et
2(b−a)2/8. So

P(Y n ≥ ε) ≤ e−tnεet
2n(b−a)2/8.

This is minimized by setting t = 4ε/(b− a)2 giving

P(Y n ≥ ε) ≤ e−2nε
2/(b−a)2 .

Applying the same argument to P(−Y n ≥ ε) yields the result. �

Example 7 Let X1, . . . , Xn ∼ Bernoulli(p). Chebyshev’s inequality yields

P(|Xn − p| > ε) ≤ 1

4nε2
.

According to Hoeffding’s inequality,

P(|Xn − p| > ε) ≤ 2e−2nε
2

which decreases much faster.

Corollary 8 If X1, X2, . . . , Xn are independent with P(a ≤ Xi ≤ b) = 1 and common mean
µ, then, with probability at least 1− δ,

|Xn − µ| ≤
√

c

2n
log

(
2

δ

)
(5)

where c = (b− a)2.

3 The Bounded Difference Inequality

So far we have focused on sums of random variables. The following result extends Hoeffding’s
inequality to more general functions g(x1, . . . , xn). Here we consider McDiarmid’s inequality,
also known as the Bounded Difference inequality.
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Theorem 9 (McDiarmid) Let X1, . . . , Xn be independent random variables. Suppose that

sup
x1,...,xn,x′i

∣∣∣∣∣g(x1, . . . , xi−1, xi, xi+1, . . . , xn)− g(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)

∣∣∣∣∣ ≤ ci (6)

for i = 1, . . . , n. Then

P

(
g(X1, . . . , Xn)− E(g(X1, . . . , Xn)) ≥ ε

)
≤ exp

{
− 2ε2∑n

i=1 c
2
i

}
. (7)

Proof. Let Vi = E(g|X1, . . . , Xi)−E(g|X1, . . . , Xi−1). Then g(X1, . . . , Xn)−E(g(X1, . . . , Xn)) =∑n
i=1 Vi and E(Vi|X1, . . . , Xi−1) = 0. Using a similar argument as in Hoeffding’s Lemma we

have,
E(etVi|X1, . . . , Xi−1) ≤ et

2c2i /8. (8)

Now, for any t > 0,

P (g(X1, . . . , Xn)− E(g(X1, . . . , Xn)) ≥ ε) = P

(
n∑

i=1

Vi ≥ ε

)

= P
(
et

Pn
i=1 Vi ≥ etε

)
≤ e−tεE

(
et

Pn
i=1 Vi

)

= e−tεE

(
et

Pn−1
i=1 ViE

(
etVn

∣∣∣∣∣ X1, . . . , Xn−1

))

≤ e−tεet
2c2n/8E

(
et

Pn−1
i=1 Vi

)

...

≤ e−tεet
2

Pn
i=1 c

2
i .

The result follows by taking t = 4ε/
∑n

i=1 c
2
i . �

Example 10 If we take g(x1, . . . , xn) = n−1
∑n

i=1 xi then we get back Hoeffding’s inequality.

Example 11 Suppose we throw m balls into n bins. What fraction of bins are empty? Let
Z be the number of empty bins and let F = Z/n be the fraction of empty bins. We can write
Z =

∑n
i=1 Zi where Zi = 1 of bin i is empty and Zi = 0 otherwise. Then

µ = E(Z) =
n∑

i=1

E(Zi) = n(1− 1/n)m = nem log(1−1/n) ≈ ne−m/n

and θ = E(F ) = µ/n ≈ e−m/n. How close is Z to µ? Note that the Zi’s are not independent
so we cannot just apply Hoeffding. Instead, we proceed as follows.
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Define variables X1, . . . , Xm where Xs = i if ball s falls into bin i. Then Z = g(X1, . . . , Xm).
If we move one ball into a different bin, then Z can change by at most 1. Hence, (6) holds
with ci = 1 and so

P(|Z − µ| > t) ≤ 2e−2t
2/m.

Recall that he fraction of empty bins is F = Z/m with mean θ = µ/n. We have

P(|F − θ| > t) = P(|Z − µ| > nt) ≤ 2e−2n
2t2/m.

4 Bounds on Expected Values

Theorem 12 (Cauchy-Schwartz inequality) If X and Y have finite variances then

E |XY | ≤
√
E(X2)E(Y 2). (9)

The Cauchy-Schwarz inequality can be written as

Cov2(X, Y ) ≤ σ2
Xσ

2
Y .

Recall that a function g is convex if for each x, y and each α ∈ [0, 1],

g(αx+ (1− α)y) ≤ αg(x) + (1− α)g(y).

If g is twice differentiable and g′′(x) ≥ 0 for all x, then g is convex. It can be shown that if
g is convex, then g lies above any line that touches g at some point, called a tangent line.
A function g is concave if −g is convex. Examples of convex functions are g(x) = x2 and
g(x) = ex. Examples of concave functions are g(x) = −x2 and g(x) = log x.

Theorem 13 (Jensen’s inequality) If g is convex, then

Eg(X) ≥ g(EX). (10)

If g is concave, then
Eg(X) ≤ g(EX). (11)

Proof. Let L(x) = a+bx be a line, tangent to g(x) at the point E(X). Since g is convex,
it lies above the line L(x). So,

Eg(X) ≥ EL(X) = E(a+ bX) = a+ bE(X) = L(E(X)) = g(EX).

�

Example 14 From Jensen’s inequality we see that E(X2) ≥ (EX)2.
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Example 15 (Kullback Leibler Distance) Define the Kullback-Leibler distance between
two densities p and q by

D(p, q) =

∫
p(x) log

(
p(x)

q(x)

)
dx.

Note that D(p, p) = 0. We will use Jensen to show that D(p, q) ≥ 0. Let X ∼ f . Then

−D(p, q) = E log

(
q(X)

p(X)

)
≤ logE

(
q(X)

p(X)

)
= log

∫
p(x)

q(x)

p(x)
dx = log

∫
q(x)dx = log(1) = 0.

So, −D(p, q) ≤ 0 and hence D(p, q) ≥ 0.

Example 16 It follows from Jensen’s inequality that 3 types of means can be ordered. As-
sume that a1, . . . , an are positive numbers and define the arithmetic, geometric and harmonic
means as

aA =
1

n
(a1 + . . .+ an)

aG = (a1 × . . .× an)1/n

aH =
1

1
n
( 1
a1

+ . . .+ 1
an

)
.

Then aH ≤ aG ≤ aA.

Suppose we have an exponential bound on P(Xn > ε). In that case we can bound E(Xn)
as follows.

Theorem 17 Suppose that Xn ≥ 0 and that for every ε > 0,

P(Xn > ε) ≤ c1e
−c2nε2 (12)

for some c2 > 0 and c1 > 1/e. Then,

E(Xn) ≤
√
C

n
. (13)

where C = (1 + log(c1))/c2.

Proof. Recall that for any nonnegative random variable Y , E(Y ) =
∫∞
0

P(Y ≥ t)dt.
Hence, for any a > 0,

E(X2
n) =

∫ ∞

0

P(X2
n ≥ t)dt =

∫ a

0

P(X2
n ≥ t)dt+

∫ ∞

a

P(X2
n ≥ t)dt ≤ a+

∫ ∞

a

P(X2
n ≥ t)dt.

Equation (12) implies that P(Xn >
√
t) ≤ c1e

−c2nt. Hence,

E(X2
n) ≤ a+

∫ ∞

a

P(X2
n ≥ t)dt = a+

∫ ∞

a

P(Xn ≥
√
t)dt ≤ a+ c1

∫ ∞

a

e−c2ntdt = a+
c1e
−c2na

c2 n
.
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Set a = log(c1)/(nc2) and conclude that

E(X2
n) ≤ log(c1)

nc2
+

1

nc2
=

1 + log(c1)

nc2
.

Finally, we have

E(Xn) ≤
√

E(X2
n) ≤

√
1 + log(c1)

nc2
.

�
Now we consider bounding the maximum of a set of random variables.

Theorem 18 Let X1, . . . , Xn be random variables. Suppose there exists σ > 0 such that
E(etXi) ≤ etσ

2/2 for all t > 0. Then

E
(

max
1≤i≤n

Xi

)
≤ σ

√
2 log n. (14)

Proof. By Jensen’s inequality,

exp

{
tE
(

max
1≤i≤n

Xi

)}
≤ E

(
exp

{
t max
1≤i≤n

Xi

})

= E
(

max
1≤i≤n

exp {tXi}
)
≤

n∑

i=1

E (exp {tXi}) ≤ net
2σ2/2.

Thus,

E
(

max
1≤i≤n

Xi

)
≤ log n

t
+
tσ2

2
.

The result follows by setting t =
√

2 log n/σ. �

5 OP and oP

In statisics, probability and machine learning, we make use of oP and OP notation.
Recall first, that an = o(1) means that an → 0 as n → ∞. an = o(bn) means that

an/bn = o(1).
an = O(1) means that an is eventually bounded, that is, for all large n, |an| ≤ C for some

C > 0. an = O(bn) means that an/bn = O(1).
We write an ∼ bn if both an/bn and bn/an are eventually bounded. In computer sicence

this s written as an = Θ(bn) but we prefer using an ∼ bn since, in statistics, Θ often denotes
a parameter space.

Now we move on to the probabilistic versions. Say that Yn = oP (1) if, for every ε > 0,

P(|Yn| > ε)→ 0.

8



Say that Yn = oP (an) if, Yn/an = oP (1).
Say that Yn = OP (1) if, for every ε > 0, there is a C > 0 such that

P(|Yn| > C) ≤ ε.

Say that Yn = OP (an) if Yn/an = OP (1).
Let’s use Hoeffding’s inequality to show that sample proportions are OP (1/

√
n) within

the the true mean. Let Y1, . . . , Yn be coin flips i.e. Yi ∈ {0, 1}. Let p = P(Yi = 1). Let

p̂n =
1

n

n∑

i=1

Yi.

We will show that: p̂n − p = oP (1) and p̂n − p = OP (1/
√
n).

We have that
P(|p̂n − p| > ε) ≤ 2e−2nε

2 → 0

and so p̂n − p = oP (1). Also,

P(
√
n|p̂n − p| > C) = P

(
|p̂n − p| >

C√
n

)

≤ 2e−2C
2

< δ

if we pick C large enough. Hence,
√
n(p̂n − p) = OP (1) and so

p̂n − p = OP

(
1√
n

)
.

Now consider m coins with probabilities p1, . . . , pm. Then

P(max
j
|p̂j − pj| > ε) ≤

m∑

j=1

P(|p̂j − pj| > ε) union bound

≤
m∑

j=1

2e−2nε
2

Hoeffding

= 2me−2nε
2

= 2 exp
{
−(2nε2 − logm)

}
.

Supose that m ≤ en
γ

where 0 ≤ γ < 1. Then

P(max
j
|p̂j − pj| > ε) ≤ 2 exp

{
−(2nε2 − nγ)

}
→ 0.

Hence,
max
j
|p̂j − pj| = oP (1).
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Lecture Notes 3

1 Uniform Bounds

Recall that, if X1, . . . , Xn ∼ Bernoulli(p) and p̂n = n−1
∑n

i=1Xi then, from Hoeffding’s
inequality,

P(|p̂n − p| > ε) ≤ 2e−2nε
2

.

Sometimes we want to say more than this.

Example 1 Suppose that X1, . . . , Xn have cdf F . Let

Fn(t) =
1

n

n∑

i=1

I(Xi ≤ t).

We call Fn the empirical cdf. How close is Fn to F? That is, how big is |Fn(t) − F (t)|?
From Hoeffding’s inequality,

P(|Fn(t)− F (t)| > ε) ≤ 2e−2nε
2

.

But that is only for one point t. How big is supt |Fn(t) − F (t)|? We would like a bound of
the form

P
(

sup
t
|Fn(t)− F (t)| > ε

)
≤ something small.

Example 2 Suppose that X1, . . . , Xn ∼ P . Let

Pn(A) =
1

n

n∑

i=1

I(Xi ∈ A).

How close is Pn(A) to P (A)? That is, how big is |Pn(A)−P (A)|? From Hoeffding’s inequal-
ity,

P(|Pn(A)− P (A)| > ε) ≤ 2e−2nε
2

.

But that is only for one set A. How big is supA∈A |Pn(A)−P (A)| for a class of sets A? We
would like a bound of the form

P
(

sup
A∈A
|Pn(A)− P (A)| > ε

)
≤ something small.

Example 3 (Classification.) Suppose we observe data (X1, Y1), . . . , (Xn, Yn) where Yi ∈
{0, 1}. Let (X, Y ) be a new pair. Suppose we observe X. Now we want to predict Y . A
classifier h is a function h(x) which takes values in {0, 1}. When we observe X we predict
Y with h(X). The classification error, or risk, is the probability of an error:

R(h) = P(Y 6= h(X)).
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The training error is the fraction of errors on the observed data (X1, Y1), . . . , (Xn, Yn):

R̂(h) =
1

n

n∑

i=1

I(Yi 6= h(Xi)).

By Hoeffding’s inequality,

P(|R̂(h)−R(h)| > ε) ≤ 2e−2nε
2

.

How do we choose a classifier? One way is to start with a set of classifiers H. Then we
define ĥ to be the member of H that minimizes the training error. Thus

ĥ = argminh∈HR̂(h).

An example is the set of linear classifiers. Suppose that x ∈ Rd. A linear classifier has
the form h(x) = 1 of βTx ≥ 0 and h(x) = 0 of βTx < 0 where β = (β1, . . . , βd)

T is a set of
parameters.

Although ĥ minimizes R̂(h), it does not minimize R(h). Let h∗ minimize the true error

R(h). A fundamental question is: how close is R(ĥ) to R(h∗)? We will see later than R(ĥ)

is close to R(h∗) if suph |R̂(h)−R(h)| is small. So we want

P
(

sup
h
|R̂(h)−R(h)| > ε

)
≤ something small.

More generally, we can state out goal as follows. For any function f define

P (f) =

∫
f(x)dP (x), Pn(f) =

1

n

n∑

i=1

f(Xi).

Let F be a set of functions. In our first example, each f was of the form ft(x) = I(x ≤ t)
and F = {ft : t ∈ R}.

We want to bound

P
(

sup
f∈F
|Pn(f)− P (f)| > ε

)
.

We will see that the bounds we obtain have the form

P
(

sup
f∈F
|Pn(f)− P (f)| > ε

)
≤ c1κ(F)e−c2nε

2

where c1 and c2 are positive constants and κ(F) is a measure of the size (or complexity) of
the class F .

Similarly, if A is a class of sets then we want a bound of the form

P
(

sup
A∈A
|Pn(A)− P (A)| > ε

)
≤ c1κ(A)e−c2nε

2

where Pn(A) = n−1
∑n

i=1 I(Xi ∈ A).
Bounds like these are called uniform bonds since they hold uniformly over a class of

functions or over a class of sets.
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2 Finite Classes

Let F = {f1, . . . , fN}. Suppose that

max
1≤j≤N

sup
x
|fj(x)| ≤ B.

We will make use of the union bound. Recall that

P
(
A1

⋃
· · ·
⋃

AN

)
≤

N∑

j=1

P(Aj).

Let Aj be the event that |Pn(fj) − P (f)| > ε. From Hoeffding’s inequality, P(Aj) ≤
2e−nε

2/(2B2). Then

P
(

sup
f∈F
|Pn(f)− P (f)| > ε

)
= P(A1

⋃
· · ·
⋃

AN)

≤
N∑

j=1

P(Aj) ≤
N∑

j=1

2e−nε
2/(2B2) = 2Ne−nε

2/(2B2).

Thus we have shown that

P
(

sup
f∈F
|Pn(f)− P (f)| > ε

)
≤ 2κe−nε

2/(2B2)

where κ = |F|.
The same idea applies to classes of sets. Let A = {A1, . . . , AN} be a finite collection of

sets. By the same reasoning we have

P
(

sup
A∈A
|Pn(A)− P (A)| > ε

)
≤ 2κe−nε

2/(2B2)

where κ = |F| and Pn(A) = n−1
∑n

i=1 I(Xi ∈ A).
To extend these ideas to infinite classes like F = {ft : t ∈ R} we need to introduce a

few more concepts.

3 Shattering

Let A be a class of sets. Some examples are:

1. A = {(−∞, t] : t ∈ R}.

2. A = {(a, b) : a ≤ b}.

3. A = {(a, b) ∪ (c, d) : a ≤ b ≤ c ≤ d}.
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4. A = all discs in Rd.

5. A = all rectangles in Rd.

6. A = all half-spaces in Rd = {x : βTx ≥ 0}.

7. A = all convex sets in Rd.

Let F = {x1, . . . , xn} be a finite set. Let G be a subset of F . Say that A picks out G if

A ∩ F = G

for some A ∈ A. For example, let A = {(a, b) : a ≤ b}. Suppose that F = {1, 2, 7, 8, 9} and
G = {2, 7}. Then A picks out G since A ∩ F = G if we choose A = (1.5, 7.5) for example.

Let S(A, F ) be the number of these subsets picked out by A. Of course S(A, F ) ≤ 2n.

Example 4 Let A = {(a, b) : a ≤ b} and F = {1, 2, 3}. Then A can pick out:

∅, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}.

So s(A, F ) = 7. Note that 7 < 8 = 23. If F = {1, 6} then A can pick out:

∅, {1}, {6}, {1, 6}.

In this case s(A, F ) = 4 = 22.

We say that F is shattered if s(A, F ) = 2n where n is the number of
points in F .

Let Fn denote all finite sets with n elements.

Define the shatter coefficient

sn(A) = sup
F∈Fn

s(A, F ).

Note that sn(A) ≤ 2n.

The following theorem is due to Vapnik and Chervonenis. The proof is beyond the scope
of the course. (If you take 10-702/36-702 you will learn the proof.)
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Class A VC dimension VA
A = {A1, . . . , AN} ≤ log2N
Intervals [a, b] on the real line 2
Discs in R2 3
Closed balls in Rd ≤ d+ 2
Rectangles in Rd 2d
Half-spaces in Rd d+ 1
Convex polygons in R2 ∞
Convex polygons with d vertices 2d+ 1

Table 1: The VC dimension of some classes A.

Theorem 5 Let A be a class of sets. Then

P
(

sup
A∈A
|Pn(A)− P (A)| > ε

)
≤ 8 sn(A) e−nε

2/32. (1)

This partly solves one of our problems. But, how big can sn(A) be? Sometimes sn(A) =
2n for all n. For example, let A be all polygons in the plane. Then sn(A) = 2n for all n.
But, in many cases, we will see that sn(A) = 2n for all n up to some integer d and then
sn(A) < 2n for all n > d.

The Vapnik-Chervonenkis (VC) dimension is

d = d(A) = largest n such that sn(A) = 2n.

In other words, d is the size of the largest set that can be shattered.

Thus, sn(A) = 2n for all n ≤ d and sn(A) < 2n for all n > d. The VC dimensions of
some common examples are summarized in Table 1. Now here is an interesting question: for
n > d how does sn(A) behave? It is less than 2n but how much less?

Theorem 6 (Sauer’s Theorem) Suppose that A has finite VC dimension d. Then, for
all n ≥ d,

s(A, n) ≤ (n+ 1)d. (2)
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We conclude that:

Theorem 7 Let A be a class of sets with VC dimension d <∞. Then

P
(

sup
A∈A
|Pn(A)− P (A)| > ε

)
≤ 8 (n+ 1)d e−nε

2/32. (3)

Example 8 Let’s return to our first example. Suppose that X1, . . . , Xn have cdf F . Let

Fn(t) =
1

n

n∑

i=1

I(Xi ≤ t).

We would like to bound P(supt |Fn(t) − F (t)| > ε). Notice that Fn(t) = Pn(A) where A =
(−∞, t]. Let A = {(−∞, t] : t ∈ R}. This has VC dimension d = 1. So

P(sup
t
|Fn(t)− F (t)| > ε) = P

(
sup
A∈A
|Pn(A)− P (A)| > ε

)
≤ 8 (n+ 1) e−nε

2/32.

In fact, there is a tighter bound in this case called the DKW (Dvoretsky-Kiefer-Wolfowitz)
inequality:

P(sup
t
|Fn(t)− F (t)| > ε) ≤ 2e−2nε

2

.

4 Bounding Expectations

Eearlier we saw that we can use exponential bounds on probabilities to get bounds on
expectations. Let us recall how that works.

Consider a finite collection A = {A1, . . . , AN}. Let

Zn = max
1≤j≤N

|Pn(Aj)− P (Aj)|.

We know that
P(Zn > ε) ≤ 2me−2nε

2

. (4)

But now we want to bound

E(Zn) =

(
max
1≤j≤N

|Pn(Aj)− P (Aj)|
)
.

We can rewrite (4) as

P(Z2
n > ε2) ≤ 2Ne−2nε

2

.

or, in other words,
P(Z2

n > t) ≤ 2Ne−2nt.

Recall that, in general, if Y ≥ 0 then

E(Y ) =

∫ ∞

0

P(Y > t)dt.
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Hence, for any s,

E(Z2
n) =

∫ ∞

0

P(Z2
n > t)dt

=

∫ s

0

P(Z2
n > t)dt+

∫ ∞

s

P(Z2
n > t)dt

≤ s+

∫ ∞

s

P(Z2
n > t)dt

≤ s+ 2N

∫ ∞

s

e−2ntdt

= s+ 2N

(
e−2ns

2n

)

= s+
N

n
e−2ns.

Let s = log(N)/(2n). Then

E(Z2
n) ≤ s+

N

n
e−2ns =

logN

2n
+

1

n
=

logN + 2

2n
.

Finally, we use Cauchy-Schwartz:

E(Zn) ≤
√
E(Z2

n) ≤
√

logN + 2

2n
= O

(√
logN

n

)
.

In summary:

E
(

max
1≤j≤N

|Pn(Aj)− P (Aj)|
)

= O

(√
logN

n

)
.

For a single set A we would have E|Pn(A) − P (A)| ≤ O(1/
√
n). The bound only increases

logarithmically with N .
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Lecture Notes 4

1 Random Samples

Let X1, . . . , Xn ∼ F . A statistic is any function T = g(X1, . . . , Xn). Recall that the sample
mean is

Xn =
1

n

n∑

i=1

Xi

and sample variance is

S2
n =

1

n− 1

n∑

i=1

(Xi −Xn)2.

Let µ = E(Xi) and σ2 = Var(Xi). Recall that

E(Xn) = µ, Var(Xn) =
σ2

n
, E(S2

n) = σ2.

Theorem 1 If X1, . . . , Xn ∼ N(µ, σ2) then Xn ∼ N(µ, σ2/n).

Proof. We know that
MXi

(s) = eµs+σ
2s2/2.

So,

MXn
(t) = E(etXn) = E(e

t
n

Pn
i=1Xi)

= (EetXi/n)n = (MXi
(t/n))n =

(
e(µt/n)+σ

2t2/(2n2)
)n

= exp

{
µt+

σ2

n
t2

2

}

which is the mgf of a N(µ, σ2/n). �

Example 2 (Example 5.2.10). Let Z1, . . . , Zn ∼ Cauchy(0, 1). Then Zn ∼ Cauchy(0, 1).

Lemma 3 If X1, . . . , Xn ∼ N(µ, σ2) then

Tn =
Xn − µ
S/
√
n
∼ tn−1 ≈ N(0, 1).

Let X(1), . . . , X(n) denoted the ordered values:

X(1) ≤ X(2) ≤ · · · ≤ X(n).

Then X(1), . . . , X(n) are called the order statistics.
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2 Convergence

Let X1, X2, . . . be a sequence of random variables and let X be another random variable.
Let Fn denote the cdf of Xn and let F denote the cdf of X.

1. Xn converges almost surely to X, written Xn
a.s.→ X, if, for every ε > 0,

P( lim
n→∞

|Xn −X| < ε) = 1. (1)

2. Xn converges to X in probability, written Xn
P→ X, if, for every ε > 0,

P(|Xn −X| > ε)→ 0 (2)

as n→∞. In other words, Xn −X = oP (1).

3. Xn converges to X in quadratic mean (also called convergence in L2), written

Xn
qm→ X, if

E(Xn −X)2 → 0 (3)

as n→∞.

4. Xn converges to X in distribution, written Xn  X, if

lim
n→∞

Fn(t) = F (t) (4)

at all t for which F is continuous.

Convergence to a Constant. A random variable X has a point mass distribution if
there exists a constant c such that P(X = c) = 1. The distribution for X is denoted by δc

and we write X ∼ δc. If Xn
P→ δc then we also write Xn

P→ c. Similarly for the other types
of convergence.

Theorem 4 Xn
as→ X if and only if, for every ε > 0,

lim
n→∞

P(sup
m≥n
|Xm −X| ≤ ε) = 1.

Example 5 (Example 5.5.8). This example shows that convergence in probability does not
imply almost sure convergence. Let S = [0, 1]. Let P be uniform on [0, 1]. We draw S ∼ P .
Let X(s) = s and let

X1 = s+ I[0,1](s), X2 = s+ I[0,1/2](s), X3 = s+ I[1/2,1](s)

X4 = s+ I[0,1/3](s), X5 = s+ I[1/3,2/3](s), X6 = s+ I[2/3,1](s)

etc. Then Xn
P→ X. But, for each s, Xn(s) does not converge to X(s). Hence, Xn does not

converge almost surely to X.
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Example 6 Let Xn ∼ N(0, 1/n). Intuitively, Xn is concentrating at 0 so we would like to
say that Xn converges to 0. Let’s see if this is true. Let F be the distribution function for
a point mass at 0. Note that

√
nXn ∼ N(0, 1). Let Z denote a standard normal random

variable. For t < 0,

Fn(t) = P(Xn < t) = P(
√
nXn <

√
nt) = P(Z <

√
nt)→ 0

since
√
nt→ −∞. For t > 0,

Fn(t) = P(Xn < t) = P(
√
nXn <

√
nt) = P(Z <

√
nt)→ 1

since
√
nt → ∞. Hence, Fn(t) → F (t) for all t 6= 0 and so Xn  0. Notice that Fn(0) =

1/2 6= F (1/2) = 1 so convergence fails at t = 0. That doesn’t matter because t = 0 is
not a continuity point of F and the definition of convergence in distribution only requires
convergence at continuity points.

Now consider convergence in probability. For any ε > 0, using Markov’s inequality,

P(|Xn| > ε) = P(|Xn|2 > ε2) ≤ E(X2
n)

ε2
=

1
n

ε2
→ 0

as n→∞. Hence, Xn
P→ 0.

The next theorem gives the relationship between the types of convergence.

Theorem 7 The following relationships hold:

(a) Xn
qm→ X implies that Xn

P→ X.

(b) Xn
P→ X implies that Xn  X.

(c) If Xn  X and if P(X = c) = 1 for some real number c, then Xn
P→ X.

(d) Xn
as→ X implies Xn

P→ X.
In general, none of the reverse implications hold except the special case in (c).

Proof. We start by proving (a). Suppose that Xn
qm→ X. Fix ε > 0. Then, using

Markov’s inequality,

P(|Xn −X| > ε) = P(|Xn −X|2 > ε2) ≤ E|Xn −X|2
ε2

→ 0.

Proof of (b). Fix ε > 0 and let x be a continuity point of F . Then

Fn(x) = P(Xn ≤ x) = P(Xn ≤ x,X ≤ x+ ε) + P(Xn ≤ x,X > x+ ε)

≤ P(X ≤ x+ ε) + P(|Xn −X| > ε)

= F (x+ ε) + P(|Xn −X| > ε).
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Also,

F (x− ε) = P(X ≤ x− ε) = P(X ≤ x− ε,Xn ≤ x) + P(X ≤ x− ε,Xn > x)

≤ Fn(x) + P(|Xn −X| > ε).

Hence,

F (x− ε) − P(|Xn −X| > ε) ≤ Fn(x) ≤ F (x+ ε) + P(|Xn −X| > ε).

Take the limit as n→∞ to conclude that

F (x− ε) ≤ lim inf
n→∞

Fn(x) ≤ lim sup
n→∞

Fn(x) ≤ F (x+ ε).

This holds for all ε > 0. Take the limit as ε→ 0 and use the fact that F is continuous at x
and conclude that limn Fn(x) = F (x).

Proof of (c). Fix ε > 0. Then,

P(|Xn − c| > ε) = P(Xn < c− ε) + P(Xn > c+ ε)

≤ P(Xn ≤ c− ε) + P(Xn > c+ ε)

= Fn(c− ε) + 1− Fn(c+ ε)

→ F (c− ε) + 1− F (c+ ε)

= 0 + 1− 1 = 0.

Proof of (d). This follows from Theorem 4.

Let us now show that the reverse implications do not hold.

Convergence in probability does not imply convergence in quadratic mean. Let U ∼ Unif(0, 1)
and let Xn =

√
nI(0,1/n)(U). Then P(|Xn| > ε) = P(

√
nI(0,1/n)(U) > ε) = P(0 ≤ U < 1/n) =

1/n→ 0. Hence, Xn
P→ 0. But E(X2

n) = n
∫ 1/n

0
du = 1 for all n so Xn does not converge in

quadratic mean.

Convergence in distribution does not imply convergence in probability. Let X ∼ N(0, 1).
Let Xn = −X for n = 1, 2, 3, . . .; hence Xn ∼ N(0, 1). Xn has the same distribution
function as X for all n so, trivially, limn Fn(x) = F (x) for all x. Therefore, Xn  X. But
P(|Xn − X| > ε) = P(|2X| > ε) = P(|X| > ε/2) 6= 0. So Xn does not converge to X in
probability. �

The relationships between the types of convergence can be summarized as follows:

q.m.

↓
a.s. → prob → distribution
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Example 8 One might conjecture that if Xn
P→ b, then E(Xn) → b. This is not true.

Let Xn be a random variable defined by P(Xn = n2) = 1/n and P(Xn = 0) = 1 − (1/n).

Now, P(|Xn| < ε) = P(Xn = 0) = 1 − (1/n) → 1. Hence, Xn
P→ 0. However, E(Xn) =

[n2 × (1/n)] + [0× (1− (1/n))] = n. Thus, E(Xn)→∞.

Example 9 Let X1, . . . , Xn ∼ Uniform(0, 1). Let X(n) = maxiXi. First we claim that

X(n)
P→ 1. This follows since

P(|X(n) − 1| > ε) = P(X(n) ≤ 1− ε) =
∏

i

P(Xi ≤ 1− ε) = (1− ε)n → 0.

Also
P(n(1−X(n)) ≤ t) = P(X(n) ≤ 1− (t/n)) = (1− t/n)n → e−t.

So n(1−X(n)) Exp(1).

Some convergence properties are preserved under transformations.

Theorem 10 Let Xn, X, Yn, Y be random variables. Let g be a continuous function.

(a) If Xn
P→ X and Yn

P→ Y , then Xn + Yn
P→ X + Y .

(b) If Xn
qm→ X and Yn

qm→ Y , then Xn + Yn
qm→ X + Y .

(c) If Xn  X and Yn  c, then Xn + Yn  X + c.

(d) If Xn
P→ X and Yn

P→ Y , then XnYn
P→ XY .

(e) If Xn  X and Yn  c, then XnYn  cX.

(f) If Xn
P→ X, then g(Xn)

P→ g(X).
(g) If Xn  X, then g(Xn) g(X).

• Parts (c) and (e) are know as Slutzky’s theorem

• Parts (f) and (g) are known as The Continuous Mapping Theorem.

• It is worth noting that Xn  X and Yn  Y does not in general imply that Xn+Yn  
X + Y .

3 The Law of Large Numbers

The law of large numbers (LLN) says that the mean of a large sample is close to the mean
of the distribution. For example, the proportion of heads of a large number of tosses of a
fair coin is expected to be close to 1/2. We now make this more precise.

Let X1, X2, . . . be an iid sample, let µ = E(X1) and σ2 = Var(X1). Recall that the sample
mean is defined as Xn = n−1

∑n
i=1Xi and that E(Xn) = µ and Var(Xn) = σ2/n.
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Theorem 11 (The Weak Law of Large Numbers (WLLN))

If X1, . . . , Xn are iid, then Xn
P→ µ. Thus, Xn − µ = oP (1).

Interpretation of the WLLN: The distribution of Xn becomes more concentrated
around µ as n gets large.

Proof. Assume that σ < ∞. This is not necessary but it simplifies the proof. Using
Chebyshev’s inequality,

P
(
|Xn − µ| > ε

)
≤ Var(Xn)

ε2
=

σ2

nε2

which tends to 0 as n→∞. �

Theorem 12 The Strong Law of Large Numbers. Let X1, . . . , Xn be iid with mean µ.
Then Xn

as→ µ.

The proof is beyond the scope of this course.

4 The Central Limit Theorem

The law of large numbers says that the distribution of Xn piles up near µ. This isn’t enough
to help us approximate probability statements about Xn. For this we need the central limit
theorem.

Suppose that X1, . . . , Xn are iid with mean µ and variance σ2. The central limit the-
orem (CLT) says that Xn = n−1

∑
iXi has a distribution which is approximately Normal

with mean µ and variance σ2/n. This is remarkable since nothing is assumed about the
distribution of Xi, except the existence of the mean and variance.

Theorem 13 (The Central Limit Theorem (CLT)) Let X1, . . . , Xn be iid with mean µ
and variance σ2. Let Xn = n−1

∑n
i=1Xi. Then

Zn ≡
Xn − µ√
Var(Xn)

=

√
n(Xn − µ)

σ
 Z

where Z ∼ N(0, 1). In other words,

lim
n→∞

P(Zn ≤ z) = Φ(z) =

∫ z

−∞

1√
2π
e−x

2/2dx.

Interpretation: Probability statements about Xn can be approximated using a Nor-
mal distribution. It’s the probability statements that we are approximating, not the
random variable itself.
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A consequence of the CLT is that

Xn − µ = OP

(√
1

n

)
.

In addition to Zn  N(0, 1), there are several forms of notation to denote the fact that
the distribution of Zn is converging to a Normal. They all mean the same thing. Here they
are:

Zn ≈ N(0, 1)

Xn ≈ N

(
µ,

σ2

n

)

Xn − µ ≈ N

(
0,
σ2

n

)

√
n(Xn − µ) ≈ N

(
0, σ2

)
√
n(Xn − µ)

σ
≈ N(0, 1).

Recall that if X is a random variable, its moment generating function (mgf) is ψX(t) =
EetX . Assume in what follows that the mgf is finite in a neighborhood around t = 0.

Lemma 14 Let Z1, Z2, . . . be a sequence of random variables. Let ψn be the mgf of Zn. Let
Z be another random variable and denote its mgf by ψ. If ψn(t) → ψ(t) for all t in some
open interval around 0, then Zn  Z.

Proof of the central limit theorem. Let Yi = (Xi − µ)/σ. Then, Zn = n−1/2
∑

i Yi.
Let ψ(t) be the mgf of Yi. The mgf of

∑
i Yi is (ψ(t))n and mgf of Zn is [ψ(t/

√
n)]n ≡ ξn(t).

Now ψ′(0) = E(Y1) = 0, ψ′′(0) = E(Y 2
1 ) = Var(Y1) = 1. So,

ψ(t) = ψ(0) + tψ′(0) +
t2

2!
ψ′′(0) +

t3

3!
ψ′′′(0) + · · ·

= 1 + 0 +
t2

2
+
t3

3!
ψ′′′(0) + · · ·

= 1 +
t2

2
+
t3

3!
ψ′′′(0) + · · ·

Now,

ξn(t) =

[
ψ

(
t√
n

)]n

=

[
1 +

t2

2n
+

t3

3!n3/2
ψ′′′(0) + · · ·

]n

=

[
1 +

t2

2
+ t3

3!n1/2ψ
′′′(0) + · · ·
n

]n

→ et
2/2
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which is the mgf of a N(0,1). The result follows from Lemma 14. In the last step we used
the fact that if an → a then (

1 +
an
n

)n
→ ea. �

The central limit theorem tells us that Zn =
√
n(Xn − µ)/σ is approximately N(0,1).

However, we rarely know σ. We can estimate σ2 from X1, . . . , Xn by

S2
n =

1

n− 1

n∑

i=1

(Xi −Xn)2.

This raises the following question: if we replace σ with Sn, is the central limit theorem still
true? The answer is yes.

Theorem 15 Assume the same conditions as the CLT. Then,

Tn =

√
n(Xn − µ)

Sn
 N(0, 1).

Proof. We have that
Tn = ZnWn

where

Zn =

√
n(Xn − µ)

σ

and
Wn =

σ

Sn
.

Now Zn  N(0, 1) and Wn
P→ 1. The result follows from Slutzky’s theorem. �

There is also a multivariate version of the central limit theorem. Recall that X =
(X1, . . . , Xk)

T has a multivariate Normal distribution with mean vector µ and covariance
matrix Σ if

f(x) =
1

(2π)k/2|Σ|1/2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

In this case we write X ∼ N(µ,Σ).

Theorem 16 (Multivariate central limit theorem) Let X1, . . . , Xn be iid random vec-
tors where Xi = (X1i, . . . , Xki)

T with mean µ = (µ1, . . . , µk)
T and covariance matrix Σ. Let

X = (X1, . . . , Xk)
T where Xj = n−1

∑n
i=1Xji. Then,

√
n(X − µ) N(0,Σ).
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5 The Delta Method

If Yn has a limiting Normal distribution then the delta method allows us to find the limiting
distribution of g(Yn) where g is any smooth function.

Theorem 17 (The Delta Method) Suppose that
√
n(Yn − µ)

σ
 N(0, 1)

and that g is a differentiable function such that g′(µ) 6= 0. Then
√
n(g(Yn)− g(µ))

|g′(µ)|σ  N(0, 1).

In other words,

Yn ≈ N

(
µ,
σ2

n

)
implies that g(Yn) ≈ N

(
g(µ), (g′(µ))2

σ2

n

)
.

Example 18 Let X1, . . . , Xn be iid with finite mean µ and finite variance σ2. By the central
limit theorem,

√
n(Xn − µ)/σ  N(0, 1). Let Wn = eXn. Thus, Wn = g(Xn) where

g(s) = es. Since g′(s) = es, the delta method implies that Wn ≈ N(eµ, e2µσ2/n).

There is also a multivariate version of the delta method.

Theorem 19 (The Multivariate Delta Method) Suppose that Yn = (Yn1, . . . , Ynk) is a
sequence of random vectors such that

√
n(Yn − µ) N(0,Σ).

Let g : Rk → R and let

∇g(y) =




∂g
∂y1
...
∂g
∂yk


 .

Let ∇µ denote ∇g(y) evaluated at y = µ and assume that the elements of ∇µ are nonzero.
Then √

n(g(Yn)− g(µ)) N
(
0,∇T

µΣ∇µ

)
.

Example 20 Let (
X11

X21

)
,

(
X12

X22

)
, . . . ,

(
X1n

X2n

)

be iid random vectors with mean µ = (µ1, µ2)
T and variance Σ. Let

X1 =
1

n

n∑

i=1

X1i, X2 =
1

n

n∑

i=1

X2i

9



and define Yn = X1X2. Thus, Yn = g(X1, X2) where g(s1, s2) = s1s2. By the central limit
theorem,

√
n

(
X1 − µ1

X2 − µ2

)
 N(0,Σ).

Now

∇g(s) =

(
∂g
∂s1
∂g
∂s2

)
=

(
s2
s1

)

and so

∇T
µΣ∇µ = (µ2 µ1)

(
σ11 σ12
σ12 σ22

)(
µ2

µ1

)
= µ2

2σ11 + 2µ1µ2σ12 + µ2
1σ22.

Therefore,
√
n(X1X2 − µ1µ2) N

(
0, µ2

2σ11 + 2µ1µ2σ12 + µ2
1σ22

)
. �
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Addendum to Lecture Notes 4

Here is the proof that

Tn =

√
n(Xn − µ)

Sn

 N(0, 1)

where

S2
n =

1

n− 1

n∑

i=1

(Xi −Xn)2.

Step 1. We first show that R2
n

P→ σ2 where

R2
n =

1

n

n∑

i=1

(Xi −Xn)2.

Note that

R2
n =

1

n

n∑

i=1

X2
i −

(
1

n

n∑

i=1

Xi

)2

.

Define Yi = X2
i . Then, using the LLN (law of large numbers)

1

n

n∑

i=1

X2
i =

1

n

n∑

i=1

Yi
P→ E(Yi) = E(X2

i ) = µ2 + σ2.

Next, by the LLN,
1

n

n∑

i=1

Xi
P→ µ.

Since g(t) = t2 is continuous, the continuous mapping theorem implies that

(
1

n

n∑

i=1

Xi

)2

P→ µ2.

Thus
R2

n
P→ (µ2 + σ2)− µ2 = σ2.

Step 2. Note that

S2
n =

(
n

n− 1

)
R2

n.

Since, R2
n

P→ σ2 and n/(n− 1)→ 1, we have that S2
n

P→ σ2.

Step 3. Since g(t) =
√
t is continuous, (for t ≥ 0) the continuous mapping theorem

implies that Sn
P→ σ.

1



Step 4. Since g(t) = t/σ is continuous, the continuous mapping theorem implies that

Sn/σ
P→ 1.

Step 5. Since g(t) = 1/t is continuous (for t > 0) the continuous mapping theorem

implies that σ/Sn
P→ 1. Since convergence in probability implies convergence in distribution,

σ/Sn  1.

Step 5. Note that

Tn =

(√
n(Xn − µ)

σ

)(
σ

Sn

)
≡ VnWn.

Now Vn  Z where Z ∼ N(0, 1) by the CLT. And we showed that Wn  1. By Slutzky’s
theorem, Tn = VnWn  Z × 1 = Z.
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Lecture Notes 5

1 Statistical Models

A statistical model P is a collection of probability distributions (or a collection of densities).

An example of a nonparametric model is

P =

{
p :

∫
(p′′(x))2dx <∞

}
.

A parametric model has the form

P =

{
p(x; θ) : θ ∈ Θ

}

where Θ ⊂ Rd. An example is the set of Normal densities {p(x; θ) = (2π)−1/2e−(x−θ)
2/2}.

For now, we focus on parametric models.

The model comes from assumptions. Some examples:

• Time until something fails is often modeled by an exponential distribution.

• Number of rare events is often modeled by a Poisson distribution.

• Lengths and weights are often modeled by a Normal distribution.

These models are not correct. But they might be useful. Later we consider nonpara-

metric methods that do not assume a parametric model

2 Statistics

Let X1, . . . , Xn ∼ p(x; θ). Let Xn ≡ (X1, . . . , Xn). Any function T = T (X1, . . . , Xn) is itself

a random variable which we will call a statistic.

Some examples are:

• order statistics, X(1) ≤ X(2) ≤ · · · ≤ X(n)

1



• sample mean: X = 1
n

∑
iXi,

• sample variance: S2 = 1
n−1

∑
i(Xi − x)2,

• sample median: middle value of ordered statistics,

• sample minimum: X(1)

• sample maximum: X(n)

• sample range: X(n) −X(1)

• sample interquartile range: X(.75n) −X(.25n)

Example 1 If X1, . . . , Xn ∼ Γ(α, β), then X ∼ Γ(nα, β/n).

Proof:

MX = E[etx] = E[e
P
Xit/n] =

∏

i

E[eXi(t/n)]

= [MX(t/n)]n =

[(
1

1− βt/n

)α]n
=

[
1

1− β/nt

]nα
.

This is the mgf of Γ(nα, β/n).

Example 2 If X1, . . . , Xn ∼ N(µ, σ2) then X ∼ N(µ, σ2/n).

Example 3 If X1, . . . , Xn iid Cauchy(0,1),

p(x) =
1

π(1 + x2)

for x ∈ R, then X ∼ Cauchy(0,1).

Example 4 If X1, . . . , Xn ∼ N(µ, σ2) then

(n− 1)

σ2
S2 ∼ χ2

(n−1).

The proof is based on the mgf.

2



Example 5 Let X(1), X(2), . . . , X(n) be the order statistics, which means that the sample

X1, X2, . . . , Xn has been ordered from smallest to largest:

X(1) ≤ X(2) ≤ · · · ≤ X(n).

Now,

FX(k)
(x) = P (X(k) ≤ x)

= P (at least k of the X1, . . . , Xn ≤ x)

=
n∑

j=k

P (exactly j of the X1, . . . , Xn ≤ x)

=
n∑

j=k

(
n

j

)
[FX(x)]j [1− FX(x)]n−j

Differentiate to find the pdf (See CB p. 229):

pX(k)
(x) =

n!

(k − 1)!(n− k)!
[FX(x)]k−1 p(x) [1− FX(x)]n−k .

3 Sufficiency

(Ch 6 CB) We continue with parametric inference. In this section we discuss data

reduction as a formal concept.

• Sample Xn = X1, · · · , Xn ∼ F .

• Assume F belongs to a family of distributions, (e.g. F is Normal), indexed by some

parameter θ.

• We want to learn about θ and try to summarize the data without throwing any infor-

mation about θ away.

• If a statistic T (X1, · · · , Xn) contains all the information about θ in the sample we say

T is sufficient.

3



3.1 Sufficient Statistics

Definition: T is sufficient for θ if the conditional distribution of Xn|T does not depend on

θ. Thus, f(x1, . . . , xn|t; θ) = f(x1, . . . , xn|t).

Example 6 X1, · · · , Xn ∼ Poisson(θ). Let T =
∑n

i=1Xi. Then,

pXn|T (xn|t) = P(Xn = xn|T (Xn) = t) =
P (Xn = xn and T = t)

P (T = t)
.

But

P (Xn = xn and T = t) =





0 if T (xn) 6= t

P (Xn = xn) if T (Xn) = t

Hence,

P (Xn = xn) =
n∏

i=1

e−θθxi

xi!
=
e−nθθ

P
xi

∏
(xi!)

=
e−nθθt∏

(xi!)
.

Now, T (xn) =
∑
xi = t and so

P (T = t) =
e−nθ(nθ)t

t!
since T ∼ Poisson(nθ).

Thus,
P (Xn = xn)

P (T = t)
=

t!

(
∏
xi)!nt

which does not depend on θ. So T =
∑

iXi is a sufficient statistic for θ. Other sufficient

statistics are: T = 3.7
∑

iXi, T = (
∑

iXi, X4), and T (X1, . . . , Xn) = (X1, . . . , Xn).

3.2 Sufficient Partitions

It is better to describe sufficiency in terms of partitions of the sample space.

Example 7 Let X1, X2, X3 ∼ Bernoulli(θ). Let T =
∑
Xi.
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xn t p(x|t)
(0, 0, 0) → t = 0 1

(0, 0, 1) → t = 1 1/3

(0, 1, 0) → t = 1 1/3

(1, 0, 0) → t = 1 1/3

(0, 1, 1) → t = 2 1/3

(1, 0, 1) → t = 2 1/3

(1, 1, 0) → t = 2 1/3

(1, 1, 1) → t = 3 1

8 elements → 4 elements

1. A partition B1, . . . , Bk is sufficient if f(x|X ∈ B) does not depend on θ.

2. A statistic T induces a partition. For each t, {x : T (x) = t} is one element of the

partition. T is sufficient if and only if the partition is sufficient.

3. Two statistics can generate the same partition: example:
∑

iXi and 3
∑

iXi.

4. If we split any element Bi of a sufficient partition into smaller pieces, we get another

sufficient partition.

Example 8 Let X1, X2, X3 ∼ Bernoulli(θ). Then T = X1 is not sufficient. Look at its

partition:
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xn t p(x|t)
(0, 0, 0) → t = 0 (1− θ)2

(0, 0, 1) → t = 0 θ(1− θ)
(0, 1, 0) → t = 0 θ(1− θ)
(0, 1, 1) → t = 0 θ2

(1, 0, 0) → t = 1 (1− θ)2

(1, 0, 1) → t = 1 θ(1− θ)
(1, 1, 0) → t = 1 θ(1− θ)
(1, 1, 1) → t = 1 θ2

8 elements → 2 elements

3.3 The Factorization Theorem

Theorem 9 T (Xn) is sufficient for θ if the joint pdf/pmf of Xn can be factored as

p(xn; θ) = h(xn)× g(t; θ).

Example 10 Let X1, · · · , Xn ∼ Poisson. Then

p(xn; θ) =
e−nθθ

P
Xi

∏
(xi!)

=
1∏
(xi!)

× e−nθθ
P

iXi .

Example 11 X1, · · · , Xn ∼ N(µ, σ2). Then

p(xn;µ, σ2) =

(
1

2πσ2

)n
2

exp

{
−
∑

(xi − x)2 + n(x− µ)2

2σ2

}
.

(a) If σ known:

p(xn;µ) =

(
1

2πσ2

)n
2

exp

{−∑(xi − x)2

2σ2

}

︸ ︷︷ ︸
h(xn)

exp

{−n(x− µ)2

2σ2

}

︸ ︷︷ ︸
g(T (xn)|µ)

.

Thus, X is sufficient for µ.

(b) If (µ, σ2) unknown then T = (X,S2) is sufficient. So is T = (
∑
Xi,
∑
X2
i ).
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3.4 Minimal Sufficient Statistics (MSS)

We want the greatest reduction in dimension.

Example 12 X1, · · · , Xn ∼ N(0, σ2). Some sufficient statistics are:

T (X1, · · · , Xn) = (X1, · · · , Xn)

T (X1, · · · , Xn) = (X2
1 , · · · , X2

n)

T (X1, · · · , Xn) =

(
m∑

i=1

X2
i ,

n∑

i=m+1

X2
i

)

T (X1, · · · , Xn) =
∑

X2
i .

Definition: T is a Minimal Sufficient Statistic if the following two statements are true:

1. T is sufficient and

2. If U is any other sufficient statistic then T = g(U) for some function g.

In other words, T generates the coarsest sufficient partition.

Suppose U is sufficient. Suppose T = H(U) is also sufficient. T provides greater reduction

than U unless H is a 1− 1 transformation, in which case T and U are equivalent.

Example 13 X ∼ N(0, σ2). X is sufficient. |X| is sufficient. |X| is MSS. So are

X2, X4, eX
2
.

Example 14 Let X1, X2, X3 ∼ Bernoulli(θ). Let T =
∑
Xi.
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xn t p(x|t) u p(x|u)

(0, 0, 0) → t = 0 1 u = 0 1

(0, 0, 1) → t = 1 1/3 u = 1 1/3

(0, 1, 0) → t = 1 1/3 u = 1 1/3

(1, 0, 0) → t = 1 1/3 u = 1 1/3

(0, 1, 1) → t = 2 1/3 u = 73 1/2

(1, 0, 1) → t = 2 1/3 u = 73 1/2

(1, 1, 0) → t = 2 1/3 u = 91 1

(1, 1, 1) → t = 3 1 u = 103 1

Note that U and T are both sufficient but U is not minimal.

3.5 How to find a Minimal Sufficient Statistic

Theorem 15 Define

R(xn, yn; θ) =
p(yn; θ)

p(xn; θ)
.

Suppose that T has the following property:

R(xn, yn; θ) does not depend on θ if and only if T (yn) = T (xn).

Then T is a MSS.

Example 16 Y1, · · · , Yn iid Poisson (θ).

p(yn; θ) =
e−nθθ

P
yi

∏
yi

,
p(yn; θ)

p(xn; θ)
=

θ
P
yi−

P
xi

∏
yi!/

∏
xi!

which is independent of θ iff
∑
yi =

∑
xi. This implies that T (Y n) =

∑
Yi is a minimal

sufficient statistic for θ.

The minimal sufficient statistic is not unique. But, the minimal sufficient partition is

unique.
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Example 17 Cauchy.

p(x; θ) =
1

π(1 + (x− θ)2) .

Then

p(yn; θ)

p(xn; θ)
=

n∏
i=1

{1 + (xi − θ)2}
n∏
j=1

{1 + (yj − θ)2}
.

The ratio is a constant function of θ if

T (Y n) = (Y(1), · · · , Y(n)).

It is technically harder to show that this is true only if T is the order statistics, but it could

be done using theorems about polynomials. Having shown this, one can conclude that the

order statistics are the minimal sufficient statistics for θ.

Note: Ignore the material on completeness and ancillary statistics.
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Lecture Notes 6

1 The Likelihood Function

Definition. Let Xn = (X1, · · · , Xn) have joint density p(xn; θ) = p(x1, . . . , xn; θ) where

θ ∈ Θ. The likelihood function L : Θ→ [0,∞) is defined by

L(θ) ≡ L(θ;xn) = p(xn; θ)

where xn is fixed and θ varies in Θ.

1. The likelihood function is a function of θ.

2. The likelihood function is not a probability density function.

3. If the data are iid then the likelihood is

L(θ) =
n∏

i=1

p(xi; θ) iid case only.

4. The likelihood is only defined up to a constant of proportionality.

5. The likelihood function is used (i) to generate estimators (the maximum likelihood

estimator) and (ii) as a key ingredient in Bayesian inference.

Example 1 These 2 samples have the same likelihood function:

(X1, X2, X3) ∼ Multinomial (n = 6, θ, θ, 1− 2θ)

X = (1, 3, 2) =⇒ L(θ) =
6!

1!3!2!
θ1θ3(1− 2θ)2 ∝ θ4(1− 2θ)2

X = (2, 2, 2) =⇒ L(θ) =
6!

2!2!2!
θ2θ2(1− 2θ)2 ∝ θ4(1− 2θ)2

Example 2 X1, · · · , Xn ∼ N(µ, 1). Then,

L(µ) =

(
1

2π

)n
2

exp

{
−1

2

n∑

i=1

(xi − µ)2

}
∝ exp

{
−n

2
(x− µ)2

}
.

1



Example 3 Let X1, . . . , Xn ∼ Bernoulli(p). Then

L(p) ∝ pX(1− p)n−X

for p ∈ [0, 1] where X =
∑

iXi.

Theorem 4 Write xn ∼ yn if L(θ|xn) ∝ L(θ|yn). The partition induced by ∼ is the minimal

sufficient partition.

Example 5 A non iid example. An AR(1) time series auto regressive model. The model is:

X1 ∼ N(0, σ2) and

Xi+1 = θXi + ei+1 ei
iid∼ N(0, σ2).

It can be show that we have the Markov property: o(xn+1|xn, xn−1, · · · , x1) = p(xn+1|xn).

The likelihood function is

L(θ) = p(xn; θ)

= p(x1; θ)p(x2|x1; θ) · · · p(xn|x1, . . . , xn−1; θ)

= p(xn|xn−1; θ)p(xn−1|xn−2; θ) · · · p(x2|x1; θ)p(x1; θ)

=
n∏

i=1

1√
2πθ

exp

(−1

2θ2
(xn+i−1 − θxn−i)2

)
.

2 Likelihood, Sufficiency and the Likelihood Principle

The likelihood function is a minimal sufficient statistic. That is, if we define the equivalence

relation: xn ∼ yn when L(θ;xn) ∝ L(θ; yn) then the resulting partition is minimal sufficient.

Does this mean that the likelihood function contains all the relevant information? Some

people say yes it does. This is sometimes called the likelihood principle. That is, the likelihood

principle says that the likelihood function contains all the infomation in the data.

This is FALSE. Here is a simple example to illustrate why. Let C = {c1, . . . , cN} be

a finite set of constants. For simplicity, asssume that cj ∈ {0, 1} (although this is not

important). Let θ = N−1
∑N

j=1 cj. Suppose we want to estimate θ. We proceed as follows.
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Let S1, . . . , Sn ∼ Bernoulli(π) where π is known. If Si = 1 you get to see ci. Otherwise, you

do not. (This is an example of survey sampling.) The likelihood function is

∏

i

πSi(1− π)1−Si .

The unknown parameter does not appear in the likelihood. In fact, there are no unknown

parameters in the likelihood! The likelihood function contains no information at all.

But we can estimate θ. Let

θ̂ =
1

Nπ

N∑

j=1

cjSj.

Then E(θ̂) = θ. Hoeffding’s inequality implies that

P(|θ̂ − θ| > ε) ≤ 2e−2nε2π2

.

Hence, θ̂ is close to θ with high probability.

Summary: the minimal sufficient statistic has all the information you need to compute

the likelihood. But that does not mean that all the information is in the likelihood.
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Lecture Notes 7

1 Parametric Point Estimation

X1, . . . , Xn ∼ p(x; θ). Want to estimate θ = (θ1, . . . , θk). An estimator

θ̂ = θ̂n = w(X1, . . . , Xn)

is a function of the data.

Methods:

1. Method of Moments (MOM)
2. Maximum likelihood (MLE)
3. Bayesian estimators

Evaluating Estimators:

1. Bias and Variance
2. Mean squared error (MSE)
3. Minimax Theory
4. Large sample theory (later).

2 Some Terminology

• Eθ(θ̂) =
∫
· · ·
∫
θ̂(x1, . . . , xn)p(x1; θ) · · · p(xn; θ)dx1 · · · dxn

• Bias: Eθ(θ̂)− θ

• the distribution of θ̂n is called its sampling distribution

• the standard deviation of θ̂n is called the standard error denoted by se(θ̂n)

• θ̂n is consistent if θ̂n
P−→ θ

• later we will see that if bias→ 0 and Var(θ̂n)→ 0 as n→∞ then θ̂n is consistent

• an estimator is robust if it is not strongly affected by perturbations in the data (more

later)

1



3 Method of Moments

Define

m1 =
1

n

n∑

i=1

Xi, µ1(θ) = E(Xi)

m2 =
1

n

n∑

i=1

X2
i , µ2(θ) = E(X2

i )

...
...

mk =
1

n

n∑

i=1

Xk
i , µk(θ) = E(Xk

i ).

Let θ̂ = (θ̂1, . . . , θ̂k) solve:

mj = µj(θ̂), j = 1, . . . , k.

Example 1 N(β, σ2) with θ = (β, σ2). Then µ1 = β and µ2 = σ2 + β2. Equate:

1

n

n∑

i=1

Xi = β̂,
1

n

n∑

i=1

X2
i = σ̂2 + β̂2

to get

β̂ = X , σ̂2 =
1

n

n∑

i=1

(Xi −Xn)2.

Example 2 Suppose

X1, . . . , Xn ∼ Binomial(k, p)

where both k and p are unknown. We get

kp = Xn,
1

n

n∑

i=1

X2
i = kp(1− p) + k2p2

giving

p̂ =
X

k
, k̂ =

X
2

X − 1
n

∑
i(Xi −X)2

.
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4 Maximum Likelihood

Let θ̂ maximize

L(θ) = p(X1, . . . , Xn; θ).

Same as maximizing

`(θ) = logL(θ).

Often it suffices to solve
∂`(θ)

∂θj
= 0, j = 1, . . . , k.

Example 3 Binomial. L(p) =
∏

i p
Xi(1− p)1−Xi = pS(1− p)n−S where S =

∑
iXi. So

`(p) = S log p+ (n− S) log(1− p)

and p̂ = X.

Example 4 X1, . . . , Xn ∼ N(µ, 1).

L(µ) ∝
∏

i

e−(Xi−µ)2/2 ∝ e−n(X−µ)
2

, `(µ) = −n
2

(X − µ)2

and µ̂ = X. For N(µ, σ2) we have

L(µ, σ2) ∝
∏

i

1

σ
exp

{
− 1

2σ2

n∑

i=1

(Xi − µ)2

}

and

`(µ, σ2) = −n log σ − 1

2σ2

n∑

i=1

(Xi − µ)2.

Set
∂`

∂µ
= 0,

∂`

∂σ2
= 0

to get

µ̂ =
1

n

n∑

i=1

Xi, σ̂2 =
1

n

n∑

i=1

(Xi −X)2.

3



Example 5 Let X1, . . . , Xn ∼ Uniform(0, θ). Then

L(θ) =
1

θn
I(θ > X(n))

and so θ̂ = X(n).

The mle is equivariant. if η = g(θ) then η̂ = g(θ̂). Suppose g is invertible so η = g(θ)

and θ = g−1(η). Define L∗(η) = L(θ) where θ = g−1(η). So, for any η,

L∗(η̂) = L(θ̂) ≥ L(θ) = L∗(η)

and hence η̂ = g(θ̂) maximizes L∗(η). For non invertible functions this is still true if we

define

L∗(η) = sup
θ:τ(θ)=η

L(θ).

Example 6 Binomial. The mle is p̂ = X. Let ψ = log(p/(1−p)). Then ψ̂ = log(p̂/(1− p̂)).

Later, we will see that maximum likelihood estimators have certain optimality properties.

5 Bayes Estimator

Regard θ as random. Start with prior distribition π(θ). Note that f(x|θ)π(θ) = f(x, θ).

Now Compute the posterior distribition by Bayes’ theorem:

π(θ|x) =
f(x|θ)π(θ)

m(x)

where

m(x) =

∫
f(x|θ)π(θ)dθ.

This can be written as

π(θ|x) ∝ L(θ)π(θ).

4



Now compute a point estimator from the posterior. For example:

θ̂ = E(θ|x) =

∫
θπ(θ|x)dθ =

∫
θf(x|θ)π(θ)dθ∫
f(x|θ)π(θ)dθ

.

This approach is controversial. We will discuss the controversey and the meaning of the

prior later in the course. For now, we just think of this as a way to define an estimator.

Example 7 Let X1, . . . , Xn ∼ Bernoulli(p). Let the prior be p ∼ Beta(α, β). Hence

π(p) =
Γ(α + β)

Γ(α)Γ(β)

and

Γ(α) =

∫ ∞

0

tα−1e−tdt.

Set Y =
∑

iXi. Then

π(p|X) ∝ pY 1− pn−Y︸ ︷︷ ︸
likelihood

× pα−11− pβ−1︸ ︷︷ ︸
prior

∝ pY+α−11− pn−Y+β−1.

Therefore, p|X ∼ Beta(Y + α, n − Y + β). (See page 325 for more details.) The Bayes

estimator is

p̃ =
Y + α

(Y + α) + (n− Y + β)
=

Y + α

α + β + n
= (1− λ)p̂mle + λ p

where

p =
α

α + β
, λ =

α + β

α + β + n
.

This is an example of a conjugate prior.

Example 8 Let X1, . . . , Xn ∼ N(µ, σ2) with σ2 known. Let µ ∼ N(m, τ 2). Then

E(µ|X) =
τ 2

τ 2 + σ2

n

X +
σ2

n

τ 2 + σ2

n

m

and

Var(µ|X) =
σ2τ 2/n

τ 2 + σ2

n

.
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6 MSE

The mean squared error (MSE) is

Eθ(θ̂ − θ)2 =

∫
· · ·
∫

(θ̂(x1, . . . , xn)− θ)2f(x1; θ) · · · f(xn; θ)dx1 . . . dxn.

The bias is

B = Eθ(θ̂)− θ

and the variance is

V = Varθ(θ̂).

Theorem 9 We have

MSE = B2 + V.

Proof. Let m = Eθ(θ̂). Then

MSE = Eθ(θ̂ − θ)2 = Eθ(θ̂ −m+m− θ)2

= Eθ(θ̂ −m)2 + (m− θ)2 + 2Eθ(θ̂ −m)(m− θ)

= Eθ(θ̂ −m)2 + (m− θ)2 = V +B2.

�
An estimator is unbiased if the bias is 0. In that case, the MSE = Variance. There is

often a tradeoff between bias and variance. So low bias can imply high variance and vice

versa.

Example 10 Let X1, . . . , Xn ∼ N(µ, σ2). Then

E(X) = µ, E(S2) = σ2.

The MSE’s are

E(X − µ)2 =
σ2

n
, E(S2 − σ2)2 =

2σ4

n− 1
.

See p 331 for calculations.
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7 Best Unbiased Estimators

What is the smallest variance of an unbiased estimator? This was once considered an im-

portant question. Today we consider it not so important. There is no reason to require an

estmator to be unbiased. Having small MSE is more important. However, for completeness,

we will briefly consider the question.

An estimator W is UMVUE (Uniform Minimum Variance Unbiased Estimator) for τ(θ)

if (i) Eθ(W ) = τ(θ) for all θ and (ii) if Eθ(W
′) = τ(θ) for all θ then Varθ(W ) ≤ Varθ(W

′).

The Cramer-Rao inequality gives a lower bound on the variance of any unbaised estima-

tor. The bound is:

Varθ(W ) ≥
(
d
dθ
EθW

)2

Eθ

((
∂
∂θ

log f(X; θ)
)2) =

(τ ′(θ))2

In(θ)
.

There is also a link with sufficiency.

Theorem 11 The Rao-Blackwell Theorem. Let W be an unbiased estimator of τ(θ)

and let T be a sufficient statistic. Define W ′ = φ(T ) = E(W |T ). Then W ′ is unbiased and

Varθ(W
′) ≤ Varθ(W ) for all θ.

Note that φ is a well-defined estimator since, by sufficiency, it does not depend on θ.

Proof. We have

Eθ(W
′) = Eθ(E(W |T )) = Eθ(W ) = τ(θ)

so W ′ is unbiased. Also,

Varθ(W ) = Varθ(E(W |T )) + Eθ(Var(W |T ))

= Varθ(W
′) + Eθ(Var(W |T ))

≥ Varθ(W
′).

�
Ignore the material on completeness.

7



Lecture Notes 8

1 Minimax Theory

Suppose we want to estimate a parameter θ using data Xn = (X1, . . . , Xn). What is the

best possible estimator θ̂ = θ̂(X1, . . . , Xn) of θ? Minimax theory provides a framework for
answering this question.

1.1 Introduction

Let θ̂ = θ̂(Xn) be an estimator for the parameter θ ∈ Θ. We start with a loss function

L(θ, θ̂) that measures how good the estimator is. For example:

L(θ, θ̂) = (θ − θ̂)2 squared error loss,

L(θ, θ̂) = |θ − θ̂| absolute error loss,

L(θ, θ̂) = |θ − θ̂|p Lp loss,

L(θ, θ̂) = 0 if θ = θ̂ or 1 if θ 6= θ̂ zero–one loss,

L(θ, θ̂) = I(|θ̂ − θ| > c) large deviation loss,

L(θ, θ̂) =
∫

log
(
p(x; θ)

p(x; bθ)
)
p(x; θ)dx Kullback–Leibler loss.

If θ = (θ1, . . . , θk) is a vector then some common loss functions are

L(θ, θ̂) = ||θ − θ̂||2 =
k∑

j=1

(θ̂j − θj)2,

L(θ, θ̂) = ||θ − θ̂||p =

(
k∑

j=1

|θ̂j − θj|p
)1/p

.

When the problem is to predict a Y ∈ {0, 1} based on some classifier h(x) a commonly used
loss is

L(Y, h(X)) = I(Y 6= h(X)).

For real valued prediction a common loss function is

L(Y, Ŷ ) = (Y − Ŷ )2.

The risk of an estimator θ̂ is

R(θ, θ̂) = Eθ
(
L(θ, θ̂)

)
=

∫
L(θ, θ̂(x1, . . . , xn))p(x1, . . . , xn; θ)dx. (1)

1



When the loss function is squared error, the risk is just the MSE (mean squared error):

R(θ, θ̂) = Eθ(θ̂ − θ)2 = Varθ(θ̂) + bias2. (2)

If we do not state what loss function we are using, assume the loss function is squared error.

The minimax risk is

Rn = infbθ sup
θ
R(θ, θ̂)

where the infimum is over all estimators. An estimator θ̂ is a minimax
estimator if

sup
θ
R(θ, θ̂) = infbθ sup

θ
R(θ, θ̂).

Example 1 Let X1, . . . , Xn ∼ N(θ, 1). We will see that Xn is minimax with respect to
many different loss functions. The risk is 1/n.

Example 2 Let X1, . . . , Xn be a sample from a density f . Let F be the class of smooth
densities (defined more precisely later). We will see (later in the course) that the minimax
risk for estimating f is Cn−4/5.

1.2 Comparing Risk Functions

To compare two estimators, we compare their risk functions. However, this does not provide
a clear answer as to which estimator is better. Consider the following examples.

Example 3 Let X ∼ N(θ, 1) and assume we are using squared error loss. Consider two

estimators: θ̂1 = X and θ̂2 = 3. The risk functions are R(θ, θ̂1) = Eθ(X − θ)2 = 1 and

R(θ, θ̂2) = Eθ(3− θ)2 = (3− θ)2. If 2 < θ < 4 then R(θ, θ̂2) < R(θ, θ̂1), otherwise, R(θ, θ̂1) <

R(θ, θ̂2). Neither estimator uniformly dominates the other; see Figure 1.

Example 4 Let X1, . . . , Xn ∼ Bernoulli(p). Consider squared error loss and let p̂1 = X.
Since this has zero bias, we have that

R(p, p̂1) = Var(X) =
p(1− p)

n
.

Another estimator is

p̂2 =
Y + α

α + β + n

2
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Figure 1: Comparing two risk functions. Neither risk function dominates the other at all
values of θ.

where Y =
∑n

i=1 Xi and α and β are positive constants.1 Now,

R(p, p̂2) = Varp(p̂2) + (biasp(p̂2))2

= Varp

(
Y + α

α + β + n

)
+

(
Ep
(

Y + α

α + β + n

)
− p
)2

=
np(1− p)

(α + β + n)2
+

(
np+ α

α + β + n
− p
)2

.

Let α = β =
√
n/4. The resulting estimator is

p̂2 =
Y +

√
n/4

n+
√
n

and the risk function is

R(p, p̂2) =
n

4(n+
√
n)2

.

The risk functions are plotted in figure 2. As we can see, neither estimator uniformly domi-
nates the other.

These examples highlight the need to be able to compare risk functions. To do so, we
need a one-number summary of the risk function. Two such summaries are the maximum
risk and the Bayes risk.

The maximum risk is
R(θ̂) = sup

θ∈Θ
R(θ, θ̂) (3)

1This is the posterior mean using a Beta (α, β) prior.
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Figure 2: Risk functions for p̂1 and p̂2 in Example 4. The solid curve is R(p̂1). The dotted
line is R(p̂2).

and the Bayes risk under prior π is

Bπ(θ̂) =

∫
R(θ, θ̂)π(θ)dθ. (4)

Example 5 Consider again the two estimators in Example 4. We have

R(p̂1) = max
0≤p≤1

p(1− p)
n

=
1

4n

and
R(p̂2) = max

p

n

4(n+
√
n)2

=
n

4(n+
√
n)2

.

Based on maximum risk, p̂2 is a better estimator since R(p̂2) < R(p̂1). However, when n is
large, R(p̂1) has smaller risk except for a small region in the parameter space near p = 1/2.
Thus, many people prefer p̂1 to p̂2. This illustrates that one-number summaries like maximum
risk are imperfect.

These two summaries of the risk function suggest two different methods for devising
estimators: choosing θ̂ to minimize the maximum risk leads to minimax estimators; choosing
θ̂ to minimize the Bayes risk leads to Bayes estimators.

An estimator θ̂ that minimizes the Bayes risk is called a Bayes estimator. That is,

Bπ(θ̂) = infeθ Bπ(θ̃) (5)

4



where the infimum is over all estimators θ̃. An estimator that minimizes the maximum risk
is called a minimax estimator. That is,

sup
θ
R(θ, θ̂) = infeθ sup

θ
R(θ, θ̃) (6)

where the infimum is over all estimators θ̃. We call the right hand side of (6), namely,

Rn ≡ Rn(Θ) = infbθ sup
θ∈Θ

R(θ, θ̂), (7)

the minimax risk. Statistical decision theory has two goals: determine the minimax risk
Rn and find an estimator that achieves this risk.

Once we have found the minimax risk Rn we want to find the minimax estimator that
achieves this risk:

sup
θ∈Θ

R(θ, θ̂) = infbθ sup
θ∈Θ

R(θ, θ̂). (8)

Sometimes we settle for an asymptotically minimax estimator

sup
θ∈Θ

R(θ, θ̂) ∼ infbθ sup
θ∈Θ

R(θ, θ̂) n→∞ (9)

where an ∼ bn means that an/bn → 1. Even that can prove too difficult and we might settle
for an estimator that achieves the minimax rate,

sup
θ∈Θ

R(θ, θ̂) � infbθ sup
θ∈Θ

R(θ, θ̂) n→∞ (10)

where an � bn means that both an/bn and bn/an are both bounded as n→∞.

1.3 Bayes Estimators

Let π be a prior distribution. After observing Xn = (X1, . . . , Xn), the posterior distribution
is, according to Bayes’ theorem,

P(θ ∈ A|Xn) =

∫
A
p(X1, . . . , Xn|θ)π(θ)dθ∫

Θ
p(X1, . . . , Xn|θ)π(θ)dθ

=

∫
A
L(θ)π(θ)dθ∫

Θ
L(θ)π(θ)dθ

(11)

where L(θ) = p(xn; θ) is the likelihood function. The posterior has density

π(θ|xn) =
p(xn|θ)π(θ)

m(xn)
(12)

where m(xn) =
∫
p(xn|θ)π(θ)dθ is the marginal distribution of Xn. Define the posterior

risk of an estimator θ̂(xn) by

r(θ̂|xn) =

∫
L(θ, θ̂(xn))π(θ|xn)dθ. (13)

5



Theorem 6 The Bayes risk Bπ(θ̂) satisfies

Bπ(θ̂) =

∫
r(θ̂|xn)m(xn) dxn. (14)

Let θ̂(xn) be the value of θ that minimizes r(θ̂|xn). Then θ̂ is the Bayes estimator.

Proof.Let p(x, θ) = p(x|θ)π(θ) denote the joint density of X and θ. We can rewrite the
Bayes risk as follows:

Bπ(θ̂) =

∫
R(θ, θ̂)π(θ)dθ =

∫ (∫
L(θ, θ̂(xn))p(x|θ)dxn

)
π(θ)dθ

=

∫ ∫
L(θ, θ̂(xn))p(x, θ)dxndθ =

∫ ∫
L(θ, θ̂(xn))π(θ|xn)m(xn)dxndθ

=

∫ (∫
L(θ, θ̂(xn))π(θ|xn)dθ

)
m(xn) dxn =

∫
r(θ̂|xn)m(xn) dxn.

If we choose θ̂(xn) to be the value of θ that minimizes r(θ̂|xn) then we will minimize the

integrand at every x and thus minimize the integral
∫
r(θ̂|xn)m(xn)dxn.

Now we can find an explicit formula for the Bayes estimator for some specific loss func-
tions.

Theorem 7 If L(θ, θ̂) = (θ − θ̂)2 then the Bayes estimator is

θ̂(xn) =

∫
θπ(θ|xn)dθ = E(θ|X = xn). (15)

If L(θ, θ̂) = |θ− θ̂| then the Bayes estimator is the median of the posterior π(θ|xn). If L(θ, θ̂)
is zero–one loss, then the Bayes estimator is the mode of the posterior π(θ|xn).

Proof.We will prove the theorem for squared error loss. The Bayes estimator θ̂(xn)

minimizes r(θ̂|xn) =
∫

(θ − θ̂(xn))2π(θ|xn)dθ. Taking the derivative of r(θ̂|xn) with respect

to θ̂(xn) and setting it equal to zero yields the equation 2
∫

(θ− θ̂(xn))π(θ|xn)dθ = 0. Solving

for θ̂(xn) we get 15.

Example 8 Let X1, . . . , Xn ∼ N(µ, σ2) where σ2 is known. Suppose we use a N(a, b2) prior
for µ. The Bayes estimator with respect to squared error loss is the posterior mean, which is

θ̂(X1, . . . , Xn) =
b2

b2 + σ2

n

X +
σ2

n

b2 + σ2

n

a. � (16)
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1.4 Minimax Estimators

Finding minimax estimators is complicated and we cannot attempt a complete coverage of
that theory here but we will mention a few key results. The main message to take away from
this section is: Bayes estimators with a constant risk function are minimax.

Theorem 9 Let θ̂ be the Bayes estimator for some prior π. If

R(θ, θ̂) ≤ Bπ(θ̂) for all θ (17)

then θ̂ is minimax and π is called a least favorable prior.

Proof.Suppose that θ̂ is not minimax. Then there is another estimator θ̂0 such that
supθ R(θ, θ̂0) < supθ R(θ, θ̂). Since the average of a function is always less than or equal to

its maximum, we have that Bπ(θ̂0) ≤ supθ R(θ, θ̂0). Hence,

Bπ(θ̂0) ≤ sup
θ
R(θ, θ̂0) < sup

θ
R(θ, θ̂) ≤ Bπ(θ̂) (18)

which is a contradiction.

Theorem 10 Suppose that θ̂ is the Bayes estimator with respect to some prior π. If the risk
is constant then θ̂ is minimax.

Proof.The Bayes risk is Bπ(θ̂) =
∫
R(θ, θ̂)π(θ)dθ = c and hence R(θ, θ̂) ≤ Bπ(θ̂) for all

θ. Now apply the previous theorem.

Example 11 Consider the Bernoulli model with squared error loss. In example 4 we showed
that the estimator

p̂(Xn) =

∑n
i=1Xi +

√
n/4

n+
√
n

has a constant risk function. This estimator is the posterior mean, and hence the Bayes
estimator, for the prior Beta(α, β) with α = β =

√
n/4. Hence, by the previous theorem,

this estimator is minimax.

Example 12 Consider again the Bernoulli but with loss function

L(p, p̂) =
(p− p̂)2

p(1− p) .

Let p̂(Xn) = p̂ =
∑n

i=1Xi/n. The risk is

R(p, p̂) = E

(
(p̂− p)2

p(1− p)

)
=

1

p(1− p)

(
p(1− p)

n

)
=

1

n

which, as a function of p, is constant. It can be shown that, for this loss function, p̂(Xn) is
the Bayes estimator under the prior π(p) = 1. Hence, p̂ is minimax.
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What is the minimax estimator for a Normal model? To answer this question in generality
we first need a definition. A function ` is bowl-shaped if the sets {x : `(x) ≤ c} are convex

and symmetric about the origin. A loss function L is bowl-shaped if L(θ, θ̂) = `(θ − θ̂) for
some bowl-shaped function `.

Theorem 13 Suppose that the random vector X has a Normal distribution with mean vector
θ and covariance matrix Σ. If the loss function is bowl-shaped then X is the unique (up to
sets of measure zero) minimax estimator of θ.

If the parameter space is restricted, then the theorem above does not apply as the next
example shows.

Example 14 Suppose that X ∼ N(θ, 1) and that θ is known to lie in the interval [−m,m]
where 0 < m < 1. The unique, minimax estimator under squared error loss is

θ̂(X) = m

(
emX − e−mX
emX + e−mX

)
.

This is the Bayes estimator with respect to the prior that puts mass 1/2 at m and mass 1/2

at −m. The risk is not constant but it does satisfy R(θ, θ̂) ≤ Bπ(θ̂) for all θ; see Figure 3.

Hence, Theorem 9 implies that θ̂ is minimax. This might seem like a toy example but it is
not. The essence of modern minimax theory is that the minimax risk depends crucially on
how the space is restricted. The bounded interval case is the tip of the iceberg.

Proof That Xn is Minimax Under Squared Error Loss. Now we will explain why
Xn is justified by minimax theory. Let X ∼ Np(θ, I) be multivariate Normal with mean

vector θ = (θ1, . . . , θp). We will prove that θ̂ = X is minimax when L(θ, θ̂) = ||θ̂ − θ||2.
Assign the prior π = N(0, c2I). Then the posterior is

Θ|X = x ∼ N

(
c2x

1 + c2
,

c2

1 + c2
I

)
. (19)

The Bayes risk for an estimator θ̂ is Rπ(θ̂) =
∫
R(θ, θ̂)π(θ)dθ which is minimized by the

posterior mean θ̃ = c2X/(1 + c2). Direct computation shows that Rπ(θ̃) = pc2/(1 + c2).
Hence, if θ∗ is any estimator, then

pc2

1 + c2
= Rπ(θ̃) ≤ Rπ(θ∗) (20)

=

∫
R(θ∗, θ)dπ(θ) ≤ sup

θ
R(θ∗, θ). (21)

We have now proved that R(Θ) ≥ pc2/(1 + c2) for every c > 0 and hence

R(Θ) ≥ p. (22)

But the risk of θ̂ = X is p. So, θ̂ = X is minimax.
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θ
0 0.5-0.5

Figure 3: Risk function for constrained Normal with m=.5. The two short dashed lines show
the least favorable prior which puts its mass at two points.

1.5 Maximum Likelihood

For parametric models that satisfy weak regularity conditions, the maximum likelihood es-
timator is approximately minimax. Consider squared error loss which is squared bias plus
variance. In parametric models with large samples, it can be shown that the variance term
dominates the bias so the risk of the mle θ̂ roughly equals the variance:2

R(θ, θ̂) = Varθ(θ̂) + bias2 ≈ Varθ(θ̂). (23)

The variance of the mle is approximately Var(θ̂) ≈ 1
nI(θ)

where I(θ) is the Fisher information.
Hence,

nR(θ, θ̂) ≈ 1

I(θ)
. (24)

For any other estimator θ′, it can be shown that for large n, R(θ, θ′) ≥ R(θ, θ̂). So the
maximum likelihood estimator is approximately minimax. This assumes that
the dimension of θ is fixed and n is increasing.

1.6 The Hodges Example

Here is an interesting example about the subtleties of optimal estimators. Let X1, . . . , Xn ∼
N(θ, 1). The mle is θ̂n = Xn = n−1

∑n
i=1Xi. But consider the following estimator due to

2Typically, the squared bias is order O(n−2) while the variance is of order O(n−1).
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Hodges. Let

Jn =

[
− 1

n1/4
,

1

n1/4

]
(25)

and define

θ̃n =

{
Xn if Xn /∈ Jn
0 if Xn ∈ Jn.

(26)

Suppose that θ 6= 0. Choose a small ε so that 0 is not contained in I = (θ− ε, θ+ ε). By the
law of large numbers, P(Xn ∈ I)→ 1. In the meantime Jn is shrinking. See Figure 4. Thus,

for n large, θ̃n = Xn with high probability. We conclude that, for any θ 6= 0, θ̃n behaves like
Xn.

When θ = 0,

P(Xn ∈ Jn) = P(|Xn| ≤ n−1/4) (27)

= P(
√
n|Xn| ≤ n1/4) = P(|N(0, 1)| ≤ n1/4)→ 1. (28)

Thus, for n large, θ̃n = 0 = θ with high probability. This is a much better estimator of θ
than Xn.

We conclude that Hodges estimator is like Xn when θ 6= 0 and is better than Xn when
θ = 0. So Xn is not the best estimator. θ̃n is better.

Or is it? Figure 5 shows the mean squared error, or risk, Rn(θ) = E(θ̃n−θ)2 as a function

of θ (for n = 1000). The horizontal line is the risk of Xn. The risk of θ̃n is good at θ = 0. At

any θ, it will eventually behave like the risk of Xn. But the maximum risk of θ̃n is terrible.
We pay for the improvement at θ = 0 by an increase in risk elsewhere.

There are two lessons here. First, we need to pay attention to the maximum risk. Sec-
ond, it is better to look at uniform asymptotics limn→∞ supθ Rn(θ) rather than pointwise
asymptotics supθ limn→∞Rn(θ).
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Figure 4: Top: when θ 6= 0, Xn will eventually be in I and will miss the interval Jn. Bottom:
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line is the risk of the sample mean.
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1. Loss L(θ, θ̂) where θ̂ = θ̂(X1, . . . , Xn). Remember that θ̂ is a function of X1, . . . , Xn.

2. Risk

R(θ, θ̂) = Eθ[L(θ, θ̂)] =

∫
· · ·
∫
L(θ, θ̂(x1, . . . , xn))p(x1, . . . , xn; θ)dx1 · · · dxn.

3. If L(θ, θ̂) = (θ̂ − θ)2 then

R(θ, θ̂) = Eθ(θ̂ − θ)2 = MSE = bias2 + variance.

4. Maximum risk: we define how good an estimator is by its maximum risk

sup
θ
R(θ, θ̂).

5. Minimax risk:
Rn = infbθ sup

θ∈Θ
R(θ, θ̂).

6. An estimator θ̂ is minimax if
sup
θ∈Θ

R(θ, θ̂) = Rn.

7. The Bayes risk for an estimator θ̂, with respect to a prior π is

Bπ(θ̂) =

∫
R(θ, θ̂)π(θ)dθ.

8. An estimator θ̂π is the Bayes estimator with respect to a prior π if

Bπ(θ̂π) = infbθ Bπ(θ̂).

In other words, θ̂π minimizes Bπ(θ̂) over all estimators.

9. The Bayes risk can we re-written as

Bπ(θ̂) =

∫
r(θ̂)m(x1, . . . , xn)dx1 · · · dxn

where m(x1, . . . , xn) =
∫
p(x1, . . . , xn; θ)π(θ)dθ and r(θ̂) =

∫
L(θ, θ̂)p(θ|x1, . . . , xn)dθ.

Hence, to minimize Bπ(θ̂π) is suffices to minimize r(θ̂).

10. Key Theorem: Suppose that (i) θ̂ is the Bayes estimator with respect to some prior

π and (ii) R(θ, θ̂) is constant. Then θ̂ is minimax.
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11. Bounds. Sometimes it is hard to find Rn so it is useful to find a lower bound and an
upper bound on the minimax risk. The following result is helpful:
Theorem: Let θ̂π by a Bayes estimator with respect to some prior π. Let θ̂∗ be any
estimator. Then:

Bπ(θ̂π) ≤ Rn ≤ sup
θ
R(θ, θ̂∗). (1)

Proof of the Lower Bound. Let θ̂π be the Bayes estimator for some prior π. Let θ̂
be any other estimator. Then,

Bπ(θ̂π) ≤ Bπ(θ̂) =

∫
R(θ, θ̂)π(θ)dθ ≤ sup

θ
R(θ, θ̂).

Take the inf over all θ̂ and conclude that

Bπ(θ̂π) ≤ infbθn sup
θ
R(θ, θ̂) = Rn.

Hence, Rn ≥ Bπ(θ̂π).

Proof of the Upper bound. Choose any estimator θ̂∗. Then

Rn = infbθ sup
θ
R(θ, θ̂) ≤ sup

θ
R(θ, θ̂∗).

12. How to prove that Xn is minimax for the Normal model. Let X1, . . . , Xn ∼ N(θ, σ2)

where σ2 is known. Let L(θ, θ̂) = (θ̂ − θ)2.

(a) First we show that Rn = σ2/n. We do this by getting a lower bound and an upper
bound on Rn.

(b) Lower Bound. Let π = N(0, c2). The posterior p(θ|X1, . . . , Xn) is N(a, b2)
where

a =
nX/σ2

1
c2

+ n
σ2

and b2 =
1

1
c2

+ n
σ2

.

The Bayes estimator minimizes r(θ̂) =
∫

(θ̂ − θ)2p(θ|x1, . . . , xn)dθ. This is mini-

mized by θ̂π =
∫
θp(θ|x1, . . . , xn)dθ = E(θ|X1, . . . , Xn). But E(θ|X1, . . . , Xn) =

a. So the Bayes esimator is

θ̂π =
nX/σ2

1
c2

+ n
σ2

.

Next we compute R(θ̂π, θ). This means we need to compute the MSE of θ̂π. The

bias θ̂π is −θσ2/(σ2 + nc2). The variance of θ̂π is nc4σ2/(σ2 + nc2)2. So

R(θ, θ̂π) = bias2 + variance =
θ2σ4

(σ2 + nc2)2
+

nc4σ2

(σ2 + nc2)2
=
θ2σ4 + nc4σ2

(σ2 + nc2)2
.
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Let us now compute the Bayes risk of this estimator. It is

Bπ(θ̂π) =

∫
R(θ, θ̂π)π(θ)dθ =

σ4
∫
θ2π(θ)dθ + nc4σ2

(σ2 + nc2)2

=
σ4c2 + nc4σ2

(σ2 + nc2)2
=

σ2

σ2

c2
+ n

.

By (1), this proves that

Rn ≥
σ2

σ2

c2
+ n

.

(c) Upper Bound. Choose θ̂ = Xn. Then R(θ, θ̂) = σ2/n. By (1),

Rn ≤ sup
θ
R(θ, θ̂) =

σ2

n
.

(d) Combining the lower and upper bound we see that

σ2

σ2

c2
+ n
≤ Rn ≤

σ2

n
.

This bound is true for all c > 0. If take the limit as c → ∞ then we get that
Rn = σ2

n
. We have succeeded in finding the minimax risk Rn.

(e) The last step is to find a minimax estimator. We have to find an estimator whose
maximum risk is Rn. But we already saw that X has maximum risk equal to Rn.
Hence Xn is minimax.
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Lecture Notes 9

Asymptotic (Large Sample) Theory

1 Review of o, O, etc.

1. an = o(1) mean an → 0 as n→∞.

2. A random sequence An is op(1) if An
P−→ 0 as n→∞.

3. A random sequence An is op(bn) if An/bn
P−→ 0 as n→∞.

4. np op(1) = op(n
p), so

√
n op(1/

√
n) = op(1)

P−→ 0.

5. op(1)× op(1) = op(1).

1. an = O(1) if |an| is bounded by a constant as n→∞.

2. A random sequence Yn is Op(1) if for every ε > 0 there exists a constant M such that

limn→∞ P (|Yn| > M) < ε as n→∞.

3. A random sequence Yn is Op(bn) if Yn/bn is Op(1).

4. If Yn  Y , then Yn is Op(1).

5. If
√
n(Yn − c) Y then Yn = OP (1/

√
n). (potential test qustion: prove this)

6. Op(1)×Op(1) = Op(1).

7. op(1)×Op(1) = op(1).

2 Distances Between Probability Distributions

Let P and Q be distributions with densities p and q. We will use the following distances

between P and Q.

1. Total variation distance V (P,Q) = supA |P (A)−Q(A)|.
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2. L1 distance d1(P,Q) =
∫
|p− q|.

3. Hellinger distance h(P,Q) =
√∫

(
√
p−√q)2.

4. Kullback-Leibler distance K(P,Q) =
∫
p log(p/q).

5. L2 distance d2(P,Q) =
∫

(p− q)2.

Here are some properties of these distances:

1. V (P,Q) = 1
2
d1(P,Q). (prove this!)

2. h2(P,Q) = 2(1−
∫ √

pq).

3. V (P,Q) ≤ h(P,Q) ≤
√

2V (P,Q).

4. h2(P,Q) ≤ K(P,Q).

5. V (P,Q) ≤ h(P,Q) ≤
√
K(P,Q).

6. V (P,Q) ≤
√
K(P,Q)/2.

3 Consistency

θ̂n = T (Xn) is consistent for θ if

θ̂n
P−→ θ

as n → ∞. In other words, θ̂n − θ = op(1). Here are two common ways to prove that θ̂n

consistent.

Method 1: Show that, for all ε > 0,

P(|θ̂n − θ| ≥ ε) −→ 0.

2



Method 2. Prove convergence in quadratic mean:

MSE(θ̂n) = Bias2(θ̂n) + Var(θ̂n) −→ 0.

If bias→ 0 and var→ 0 then θ̂n
qm→ θ which implies that θ̂n

p→ θ.

Example 1 Bernoulli(p). The mle p̂ has bias 0 and variance p(1 − p)/n → 0. So p̂
P−→ p

and is consistent. Now let ψ = log(p/(1−p)). Then ψ̂ = log(p̂/(1− p̂)). Now ψ̂ = g(p̂) where

g(p) = log(p/(1 − p)). By the continuous mapping theorem, ψ̂
P−→ψ so this is consistent.

Now consider

p̂ =
X + 1

n+ 1
.

Then

bias = E(p̂)− p = − p− 1

n(1 + n)
→ 0

and

var =
p(1− p)

n
→ 0.

So this is consistent.

Example 2 X1, . . . , Xn ∼ Uniform(0, θ). Let θ̂n = X(n). By direct proof (we did it earlier)

we have θ̂n
P−→ θ.

Method of moments estimators are typically consistent. Consider one parameter. Recall

that µ(θ̂) = m where m = n−1
∑n

i=1Xi. Assume that µ−1 exists and is continuous. So

θ̂ = µ−1(m). By the WLLN m
P−→µ(θ). So, by the continuous mapping Theorem,

θ̂n = µ−1(m)
P−→µ−1(µ(θ)) = θ.

4 Consistency of the MLE

Under regularity conditions (see page 516), the mle is consistent. Let us prove this in a

special case. This will also reveal a connection between the mle and Hellinger distance.
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Suppose that the model consists of finitely many distinct densities {p0, p1, . . . , pN}. The

likelihood function is

L(pj) =
n∏

i=1

pj(Xi).

The mle p̂ is the density pj that maximizes L(pj). Without loss of generality, assume that

the true density is p0.

Theorem 3

P(p̂ 6= p0)→ 0

as n→∞.

Proof. Let us begin by first proving an inequality. Let εj = h(p0, pj). Then, for j 6= 0,

P
(
L(pj)

L(p0)
> e−nε

2
j/2

)
= P

(
n∏

i=1

pj(Xi)

p0(Xi)
> e−nε

2
j/2

)
= P

(
n∏

i=1

√
pj(Xi)

p0(Xi)
> e−nε

4
j/2

)

≤ enε
2
j/4E

(
n∏

i=1

√
pj(Xi)

p0(Xi)

)
= enε

2
j/4

n∏

i=1

E

(√
pj(Xi)

p0(Xi)

)

= enε
2
j/4

(∫ √
pj p0

)n
= enε

2
j/4

(
1− h2(p0, pj)

2

)n
= enε

2
j/4

(
1− ε2j

2

)n

= enε
2
j/4 exp

{
n log

(
1− ε2j

2

)}
≤ enε

2
j/4e−nε

2
j/2 = e−nε

2
j/2.

We used the fact that h2(p0, pj) = 2 − 2
∫ √

p0 pj and also that log(1 − x) ≤ −x for x > 0.

Let ε = min{ε1, . . . , εN}. Then

P(p̂ 6= p0) ≤ P
(
L(pj)

L(p0)
> e−nε

2
j/2 for some j

)

≤
N∑

j=1

P
(
L(pj)

L(p0)
> e−nε

2
j/2

)

≤
N∑

j=1

e−nε
2
j/2 ≤ Ne−nε

2/2 → 0.

�

We can prove a similar result using Kullback-Leibler distance as follows. Let X1, X2, . . .

be iid Fθ. Let θ0 be the true value of θ and let θ be some other value. We will show that
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L(θ0)/L(θ) > 1 with probability tending to 1. We assume that the model is identifiable;

this means that θ1 6= θ2 implies that K(θ1, θ2) > 0 where K is the Kullback-Leibler distance.

Theorem 4 Suppose the model is identifiable. Let θ0 be the true value of the parameter.

For any θ 6= θ0

P
(
L(θ0)

L(θ)
> 1

)
→ 1

as n→∞.

Proof. We have

1

n
(`(θ0)− `(θ)) =

1

n

n∑

i=1

log p(Xi; θ0)−
1

n

n∑

i=1

log p(Xi; θ)

p→ E(log p(X; θ0))− E(log p(X; θ))

=

∫
(log p(x; θ0))p(x; θ0)dx−

∫
(log p(x; θ))p(x; θ0)dx

=

∫ (
log

p(x; θ0)

p(x; θ)

)
p(x; θ0)dx

= K(θ0, θ) > 0.

So

P
(
L(θ0)

L(θ)
> 1

)
= P (`(θ0)− `(θ) > 0)

= P
(

1

n
(`(θ0)− `(θ)) > 0

)
→ 1. �

�
This is not quite enough to show that θ̂n → θ0.

Example 5 Inconsistency of an mle. In all examples so far n → ∞, but the number of

parameters is fixed. What if the number of parameters also goes to ∞? Let

Y11, Y12 ∼ N(µ1, σ
2)

Y21, Y22 ∼ N(µ2, σ
2)

... ∼ ...

Yn1, Yn2 ∼ N(µn, σ
2).
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Some calculations show that

σ̂2 =
n∑

i=1

2∑

j=1

(Yij − Y i)
2

2n
.

It is easy to show (good test question) that

σ̂2 p−→ σ2

2
.

Note that the modified estimator 2σ̂2 is consistent.

The reason why consistency fails is because the dimension of the parameter space is

increasing with n.

Theorem 6 Under regularity conditions on the model {p(x; θ) : θ ∈ Θ}, the mle is consis-

tent.

5 Score and Fisher Information

The score and Fisher information are the key quantities in many aspects of statistical infer-

ence. (See Section 7.3.2 of CB.) Suppose for now that θ ∈ R.

• L(θ) = p(xn; θ)

• `(θ) = log L(θ)

• S(θ) = ∂
∂θ
`(θ)← score function.

Recall that the value θ̂ that maximizes L(θ) is the maximum likelihood estimator

(mle). Equivalently, θ̂ maximizes `(θ). Note that θ̂ = T (X1, . . . , Xn) is a function of the

data. Often, we get θ̂ by differentiation. In that case θ̂ solves

S(θ̂) = 0.

We’ll discuss the mle in detail later.
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Some Notation: Recall that

Eθ(g(X)) ≡
∫
g(x)p(x; θ)dx.

Theorem 7 Under regularity conditions,

Eθ[S(θ)] = 0.

In other words,

∫
· · ·
∫ (

∂ log p(x1, . . . , xn; θ)

∂θ

)
p(x1, . . . , xn; θ)dx1 . . . dxn = 0.

That is, if the expected value is taken at the same θ as we evaluate S, then the expectation

is 0. This does not hold when the θ’s mismatch: Eθ0 [S(θ1)] 6= 0.

Proof.

Eθ[S(θ)] =

∫
· · ·
∫
∂ log p(xn; θ)

∂θ
p(xn; θ) dx1 · · · dxn

=

∫
· · ·
∫ ∂

∂θ
p(xn; θ)

p(xn; θ)
p(xn; θ) dx1 · · · dxn

=
∂

∂θ

∫
· · ·
∫
p(xn; θ) dx1 · · · dxn

︸ ︷︷ ︸
1

= 0.

�

Example 8 Let X1, . . . , Xn ∼ N(θ, 1). Then

S(θ) =
n∑

i=1

(Xi − θ).

Warning: If the support of f depends on θ, then
∫
· · ·
∫

and ∂
∂θ

cannot be switched.

The next quantity of interest is the Fisher Information or Expected Information.

The information is used to calculate the variance of quantities that arise in inference problems

7



such as the mle θ̂. It is called information because it tells how much information is in the

likelihood about θ. The definition is:

I(θ) = Eθ[S(θ)2]

= Eθ[S(θ)2]−
(
Eθ[S(θ)]

)2

= Varθ(S(θ)) since Eθ[S(θ)] = 0

= Eθ
[
− ∂2

∂θ2
`(θ)

]
← easiest way to calculate

We will prove the final equality under regularity conditions shortly. I(θ) grows linearly in

n, so for an iid sample, a more careful notation would be In(θ)

In(θ) = E

[
− ∂2

∂θ2
l(θ)

]
= E

[
−

n∑

i=1

∂2

∂θ2
log p(Xi; θ)

]

= −nE
[
∂2

∂θ2
log p(X1; θ)

]
= nI1(θ).

Note that the Fisher information is a function of θ in two places:

• The derivate is w.r.t. θ and the information is evaluated at a particular value of θ.

• The expectation is w.r.t. θ also. The notation only allows for a single value of θ because

the two quantities should match.

A related quantity of interest is the observed information, defined as

În(θ) = − ∂2

∂θ2
`(θ) = −

n∑

i=1

∂2

∂θ2
log p(Xi; θ).

By the LLN 1
n
În(θ)

P−→ I1(θ). So observed information can be used as a good approximation

to the Fisher information.

Let us prove the identity: Eθ[S(θ)2] = Eθ
[
−∂2
∂θ2

`(θ)
]
. For simplicity take n = 1. First

note that

∫
p = 1 ⇒

∫
p′ = 0 ⇒

∫
p′′ = 0 ⇒

∫
p′′

p
p = 0 ⇒ E

(
p′′

p

)
= 0.
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Let ` = log p and S = `′ = p′/p. Then `′′ = (p′′/p)− (p′/p)2 and

V (S) = E(S2)− (E(S))2 = E(S2) = E
(
p′

p

)2

= E
(
p′

p

)2

− E
(
p′′

p

)

= −E
((

p′′

p

)
−
(
p′

p

)2
)

= −E(`′′). �

Why is I(θ) called “Information”? Later we will see that Var(θ̂) ≈ 1/In(θ).

The Vector Case. Let θ = (θ1, · · · , θK). L(θ) and `(θ) are defined as before.

• S(θ) =
[
∂`(θ)
∂θi

]
i=1,··· ,K

a vector of dimension K

• Information I(θ) = Var[S(θ)] is the variance-covariance matrix of

S(θ) = [Iij]ij=1,··· ,k

where

Iij = −Eθ
[
∂2`(θ)

∂θi ∂θj

]
.

• I(θ)−1 is the asymptotic variance of θ̂. (This is the inverse of the matrix, evaluated at

the proper component of the matrix.)
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Example 9

X1, · · · , Xn ∼ N(µ, γ)

L(µ, γ) =
n∏

i=1

1√
2πγ

exp

{−1

2γ
(xi − µ)2

}
∝ γ

−n
2 exp

{−1

2γ
Σ(xi − µ)2

}

`(µ, γ) = K − n

2
log γ − 1

2γ
Σ(xi − µ)2

S(µ, γ) =




1
γ
Σ(xi − µ)

− n
2γ

+ 1
2γ2

Σ(xi − µ)2




I(µ, γ) = −E



−n
γ

−1
γ2

Σ(xi − µ)

−1
γ2

Σ(xi − µ) n
2γ2
− 1

γ3
Σ(xi − µ)2




=




n
γ

0

0 n
2γ2




You can check that Eθ(S) = (0, 0)T .

6 Efficiency and Asymptotic Normality

If
√
n(θ̂n− θ) N(0, v2) then we call v2 the asymptotic variance of θ̂n. This is not the same

as the limit of the variance which is limn→∞ nVar(θ̂n).

ConsiderXn. In this case, the asymptotic variance is σ2. We also have that limn→∞ nVar(Xn) =

σ2. In this case, they are the same. In general, the latter may be larger (or even infinite).

Example 10 (Example 10.1.10) Suppose we observe Yn ∼ N(0, 1) with probability pn and

Yn ∼ N(0, σ2
n) with probability 1− pn. We can write this as a hierachical model:

Wn ∼ Bernoulli(pn)

Yn|Wn ∼ N(0,Wn + (1−Wn)σ2
n).

Now,

Var(Yn) = VarE(Yn|Wn) + EVar(Yn|Wn)

= Var(0) + E(Wn + (1−Wn)σ2
n) = pn + (1− pn)σ2

n.
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Suppose that pn → 1, σn →∞ and that (1− pn)σ2
n →∞. Then Var(Yn)→∞. Then

P(Yn ≤ a) = pnP(Z ≤ a) + (1− pn)P(Z ≤ a/σn)→ P(Z ≤ a)

and so Yn  N(0, 1). So the asymptotic variance is 1.

Suppose we want to estimate τ(θ). Let

v(θ) =
|τ ′(θ)|2
I(θ)

where

I(θ) = Var

(
∂

∂θ
log p(X; θ)

)
= −Eθ

(
∂2

∂θ2
log p(X; θ)

)
.

We call v(θ) the Cramer-Rao lower bound. Generally, any well-behaved estimator will

have a limiting variance bigger than or equal to v(θ). We say that Wn is efficient if
√
n(Wn−

τ(θ)) N(0, v(θ)).

Theorem 11 Let X1, X2, . . . , be iid. Assume that the model satisfies the regularity condi-

tions in 10.6.2. Let θ̂ be the mle. Then

√
n(τ(θ̂)− τ(θ)) N(0, v(θ)).

So τ(θ̂) is consistent and efficient.

We will now prove the asymptotic normality of the mle.

Theorem 12
√
n(θ̂n − θ) N

(
0,

1

I(θ)

)
.

Hence,

θ̂n = θ +OP

(
1√
n

)
.

Proof. By Taylor’s theorem

0 = `′(θ̂) = `′(θ) + (θ̂ − θ)`′′(θ) + · · · .
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Hence
√
n(θ̂ − θ) ≈

1√
n
`′(θ)

− 1
n
`′′(θ)

=
A

B
.

Now

A =
1√
n
`′(θ) =

√
n× 1

n

n∑

i=1

S(θ,Xi) =
√
n(S − 0)

where S(θ,Xi) is the score function based onXi. Recall that E(S(θ,Xi)) = 0 and Var(S(θ,Xi)) =

I(θ). By the central limit theorem, A  N(0, I(θ)) =
√
I(θ)Z where Z ∼ N(0, 1). By the

WLLN,

B
P−→ − E(`′′) = I(θ).

By Slutsky’s theorem

A

B
 
√
I(θ)Z

I(θ)
=

Z√
I(θ)

= N

(
0,

1

I(θ)

)
.

So
√
n(θ̂ − θ) N

(
0,

1

I(θ)

)
. �

�
Theorem 11 follows by the delta method:

√
n(θ̂n − θ) N(0, 1/I(θ))

implies that
√
n(τ(θ̂n)− τ(θ)) N(0, (τ ′(θ))2/I(θ)).

The standard error of θ̂ is

se =

√
1

nI(θ)
=

√
1

In(θ)
.

The estimated standard error is

ŝe =

√
1

In(θ̂)
.

The standard error of τ̂ = τ(θ̂) is

se =

√
|τ ′(θ)|
nI(θ)

=

√
|τ ′(θ)|
In(θ)

.

12



The estimated standard error is

ŝe =

√
|τ ′(θ̂)|
In(θ̂)

.

Example 13 X1, · · · , Xn iid Exponential (θ). Let t = x. So: p(z; θ) = θe−θx, L(θ) =

e−nθt+n ln θ, l(θ) = −nθt + n ln θ, S(θ) = n
θ
− nt ⇒ θ̂ = 1

t
= 1

X
, l′′(θ) = −n

θ2
, I(θ) =

E[−l′′(θ)] = n
θ2

, θ̂ ≈ N
(
θ, θ

2

n

)
.

Example 14 X1, . . . , Xn ∼ Bernoulli(p). The mle is p̂ = X. The Fisher information for

n = 1 is

I(p) =
1

p(1− p) .

So
√
n(p̂− p) N(0, p(1− p)).

Informally,

p̂ ≈ N

(
p,

p(1− p)
n

)
.

The asymptotic variance is p(1 − p)/n. This can be estimated by p̂(1 − p̂)/n. That is, the

estimated standard error of the mle is

ŝe =

√
p̂(1− p̂)

n
.

Now suppose we want to estimate τ = p/(1− p). The mle is τ̂ = p̂/(1− p̂). Now

∂

∂p

p

1− p =
1

(1− p)2

The estimated standard error is

ŝe(τ̂) =

√
p̂(1− p̂)

n
× 1

(1− p̂)2 =

√
p̂

n(1− p̂)3 .

7 Relative Efficiency

If

√
n(Wn − τ(θ))  N(0, σ2

W )

√
n(Vn − τ(θ))  N(0, σ2

V )

13



then the asymptotic relative efficiency (ARE) is

ARE(Vn,Wn) =
σ2
W

σ2
V

.

Example 15 (10.1.17). Let X1, . . . , Xn ∼ Poisson(λ). The mle of λ is X. Let

τ = P(Xi = 0).

So τ = e−λ. Define Yi = I(Xi = 0). This suggests the estimator

Wn =
1

n

n∑

i=1

Yi.

Another estimator is the mle

Vn = e−
bλ.

The delta method gives

Var(Vn) ≈ λe−2λ

n
.

We have

√
n(Wn − τ)  N(0, e−λ(1− e−λ))
√
n(Vn − τ)  N(0, λe−2λ).

So

ARE(Wn, Vn) =
λ

eλ − 1
≤ 1. �

Since the mle is efficient, we know that, in general, ARE(Wn,mle) ≤ 1.

8 Robustness

The mle is efficient only if the model is right. The mle can be bad if the model is wrong.

That is why we should consider using nonparametric methods. One can also replace the mle

with estimators that are more robust.

14



Suppose we assume that X1, . . . , Xn ∼ N(θ, σ2). The mle is θ̂n = Xn. Suppose, however

that we have a perturbed model Xi is N(θ, σ2) with probability 1− δ and Xi is Cauchy with

probability δ. Then, Var(Xn) =∞.

Consider the median Mn. We will show that

ARE(median,mle) = .64.

But, under the perturbed model the median still performs well while the mle is terrible. In

other words, we can trade efficiency for robustness. Let us now find the limiting distribution

of Mn.

Let Yi = I(Xi ≤ µ+ a/
√
n). Then Yi ∼ Bernoulli(pn) where

pn = P (µ+ a/
√
n) = P (µ) +

a√
n
p(µ) + o(n−1/2) =

1

2
+

a√
n
p(µ) + o(n−1/2).

Also,
∑

i Yi has mean npn and standard deviation

σn =
√
npn(1− pn).

Note that,

Mn ≤ µ+
a√
n

if and only if
∑

i

Yi ≥
n+ 1

2
.

Then,

P(
√
n(Mn − µ) ≤ a) = P

(
Mn ≤ µ+

a√
n

)
= P

(∑

i

Yi ≥
n+ 1

2

)

= P
(∑

i Yi − npn
σn

≥
n+1
2
− npn
σn

)
.

Now,
n+1
2
− npn
σn

→ −2ap(µ)

and hence

P(
√
n(Mn − µ) ≤ a)→ P(Z ≥ −2ap(µ)) = P

(
− Z

2p(µ)
≤ a

)
= P

(
Z

2p(µ)
≤ a

)

so that
√
n(Mn − µ) N

(
0,

1

(2p(µ))2

)
.

For a standard Normal, (2p(0))2 = .64.
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Lecture Notes 10

Hypothesis Testing

1 Introduction

(See Chapter 8 and Chapter 10.3.)

Null hypothesis: H0 : θ ∈ Θ0

Alternative hypothesis: H1 : θ ∈ Θ1

where Θ0 ∩Θ1 = ∅.

Example 1 X1, . . . , Xn ∼ Bernoulli(p).

H0 : p =
1

2
H1 : p 6= 1

2
. �

The question is not whether H0 is true or false. The question is whether there is sufficient

evidence to reject H0, much like a court case.

Our possible actions are: reject H0 or retain (don’t reject) H0.

Decision

Retain H0 Reject H0

H0 true
√

Type I error

(false positive)

H1 true Type II error
√

(false negative)

Warning: Hypothesis testing should only be used when it is appropriate. Of-

ten times, people use hypothesis tetsing when it would be much more appropriate

to use confidence intervals (which is the next topic).
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2 Constructing Tests

1. Choose a test statistic W = W (X1, . . . , Xn).

2. Choose a rejection region R.

3. If W ∈ R we reject H0 otherwise we retain H0.

Example 2 X1, . . . , Xn ∼ Bernoulli(p).

H0 : p =
1

2
H1 : p 6= 1

2
.

Let W = n−1
∑n

i=1Xi. Let R = {xn : |w(xn)− 1/2| > δ}. So we reject H0 if |W − 1/2| > δ.

We need to choose W and R so that the test has good statistical properties. We will

consider the following tests:

1. Neyman-Pearson Test

2. Wald test

3. Likelihood Ratio Test (LRT)

4. the permutation test

5. the score test (optional)

Before we discuss these methods, we first need to talk about how we evaluate tests.

3 Evaluating Tests

Suppose we reject H0 when Xn = (X1, . . . , Xn) ∈ R. Define the power function by

β(θ) = Pθ(X
n ∈ R).

We want β(θ) to be small when θ ∈ Θ0 and we want β(θ) to be large when θ ∈ Θ1.

The general strategy is:

2



1. Fix α ∈ [0, 1].

2. Now try to maximize β(θ) for θ ∈ Θ1 subject to β(θ) ≤ α for θ ∈ Θ0.

We need the following definitions. A test is size α if

sup
θ∈Θ0

β(θ) = α.

A test is level α if

sup
θ∈Θ0

β(θ) ≤ α.

A size α test and a level α test are almost the same thing. The distinction is made bcause

sometimes we want a size α test and we cannot construct a test with exact size α but we

can construct one with a smaller error rate.

Example 3 X1, . . . , Xn ∼ N(θ, σ2) with σ2 known. Suppose

H0 : θ = θ0, H1 : θ > θ0.

This is called a one-sided alternative. Suppose we reject H0 if W > c where

W =
Xn − θ0

σ/
√
n
.

Then

β(θ) = Pθ

(
Xn − θ0

σ/
√
n

> c

)

= Pθ

(
Xn − θ
σ/
√
n
> c+

θ0 − θ
σ/
√
n

)

= P

(
Z > c+

θ0 − θ
σ/
√
n

)

= 1− Φ

(
c+

θ0 − θ
σ/
√
n

)

where Φ is the cdf of a standard Normal. Now

sup
θ∈Θ0

β(θ) = β(θ0) = 1− Φ(c).
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To get a size α test, set 1− Φ(c) = α so that

c = zα

where zα = Φ−1(1− α). Our test is: reject H0 when

W =
Xn − θ0

σ/
√
n

> zα.

Example 4 X1, . . . , Xn ∼ N(θ, σ2) with σ2 known. Suppose

H0 : θ ≤ θ0, H1 : θ 6= θ0.

This is called a two-sided alternative. We will reject H0 if |W | > c where W is defined as

before. Now

β(θ) = Pθ(W < −c) + Pθ(W > c)

= Pθ

(
Xn − θ0

σ/
√
n

< −c
)

+ Pθ

(
Xn − θ0

σ/
√
n

> c

)

= P

(
Z < −c+

θ0 − θ
σ/
√
n

)
+ P

(
Z > c+

θ0 − θ
σ/
√
n

)

= Φ

(
−c+

θ0 − θ
σ/
√
n

)
+ 1− Φ

(
c+

θ0 − θ
σ/
√
n

)

= Φ

(
−c+

θ0 − θ
σ/
√
n

)
+ Φ

(
−c− θ0 − θ

σ/
√
n

)

since Φ(−x) = 1− Φ(x). The size is

β(θ0) = 2Φ(−c).

To get a size α test we set 2Φ(−c) = α so that c = −Φ−1(α/2) = Φ−1(1− α/2) = zα/2. The

test is: reject H0 when

|W | =
∣∣∣∣
Xn − θ0

σ/
√
n

∣∣∣∣ > zα/2.

4 The Neyman-Pearson Test

Let Cα denote all level α tests. A test in Cα with power function β is uniformly most

powerful (UMP) if the following holds: if β′ is the power function of any other test in Cα
then β(θ) ≤ β′(θ) for all θ ∈ Θ1.
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Consider testing H0 : θ = θ0 versus H1 : θ = θ1. (Simple null and simple alternative.)

Theorem 5 Suppose we set

R =

{
x = (x1, . . . , xn) :

f(X1, . . . , Xn; θ1)

f(X1, . . . , Xn; θ0)
> k

}
=

{
xn :

L(θ1)

L(θ0)
> k

}

where k is chosen so that

Pθ0(X
n ∈ R) = α.

In other words, reject H0 if
L(θ1)

L(θ0)
> k.

This test is a UMP level α test.

This is theorem 8.3.12 in the book. The proof is short; you should read the proof.

Notes:

1. Ignore the material on union-intersection tests and monotonote likelihood ratios (MLR).

2. In general it is hard to find UMP tests. Sometimes they don’t even exist. Still, we can

find tests with good properties.

5 The Wald Test

Let

W =
θ̂n − θ0

se
.

Under the uusal conditions we have that under H0, W  N(0, 1). Hence, an asymptotic

level α test is to reject when |W | > zα/2.

For example, with Bernoulli data, to test H0 : p = p0,

W =
p̂− p0√ bp(1−bp)

n

.

You can also use

W =
p̂− p0√
p0(1−p0)

n

.
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In other words, to compute the standard error, you can replace θ with an estimate θ̂ or by

the null value θ0.

6 The Likelihood Ratio Test (LRT)

This test is simple: reject H0 if λ(xn) ≤ c where

λ(xn) =
supθ∈Θ0

L(θ)

supθ∈Θ L(θ)
=
L(θ̂0)

L(θ̂)

where θ̂0 maximizes L(θ) subject to θ ∈ Θ0.

Example 6 X1, . . . , Xn ∼ N(θ, 1). Suppose

H0 : θ = θ0, H1 : θ 6= θ0.

After some algebra (see page 376),

λ = exp
{
−n

2
(Xn − θ0)2

}
.

So

R = {x : λ ≤ c} = {x : |X − θ0| ≥ c′}

where c′ =
√
−2 log c/n. Choosing c′ to make this level α gives: reject if |W | > zα/2 where

W =
√
n(X − θ0) which is the test we constructed before.

Example 7 X1, . . . , Xn ∼ N(θ, σ2). Suppose

H0 : θ ≤ θ0, H1 : θ 6= θ0.

Then

λ(xn) =
L(θ0, σ̂0)

L(θ̂, σ̂)

where σ̂0 maximizes the likelihood subject to θ = θ0. In the homework, you will prove that

λ(xn) < c corresponds to rejecting when |Tn| > k for some constant k where

Tn =
Xn − θ0

S/
√
n
.
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Under H0, Tn has a t-distribution with n − 1 degrees of freedom. So the final test is: reject

H0 if

|Tn| > tn−1,α/2.

This is called Student’s t-test. It was invented by William Gosset working at Guiness Brew-

eries and writing under the pseudonym Srudent.

Theorem 8 Consider testing H0 : θ = θ0 versus H1 : θ 6= θ0 where θ ∈ R. Under H0,

−2 log λ(Xn) χ2
1.

Hence, if we let Wn = −2 log λ(Xn) then

Pθ0(W > χ2
1,α)→ α

as n→∞.

Proof. Using a Taylor expansion:

`(θ) ≈ `(θ̂) + `′(θ̂)(θ − θ̂) + `′′(θ̂)
(θ − θ̂)2

2
= `(θ̂) + `′′(θ̂)

(θ − θ̂)2

2

and so

−2 log λ(xn) = 2`(θ̂)− 2`(θ0)

≈ 2`(θ̂)− 2`(θ̂)− `′′(θ̂)(θ − θ̂)2 = −`′′(θ̂)(θ − θ̂)2

=
−`′′(θ̂)
In(θ0)

In(θ0)(
√
n(θ̂ − θ0))2 = An ×Bn.

Now An
P−→ 1 by the WLLN and

√
Bn  N(0, 1). The result follows by Slutsky’s theorem.

�

Example 9 X1, . . . , Xn ∼ Poisson(λ). We want to test H0 : λ = λ0 versus H1 : λ 6= λ0.

Then

−2 log λ(xn) = 2n[(λ0 − λ̂)− λ̂ log(λ0/λ̂)].

We reject H0 when −2 log λ(xn) > χ2
1,α.
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Now suppose that θ = (θ1, . . . , θk). Suppose that H0 fixes some of the parameters. Then

−2 log λ(Xn) χ2
ν

where

ν = dim(Θ)− dim(Θ0).

Example 10 Consider a multinomial with θ = (p1, . . . , p5). So

L(θ) = py11 · · · py55 .

Suppose we want to test

H0 : p1 = p2 = p3 and p4 = p5

versus the alternative that H0 is false. In this case

ν = 4− 1 = 3.

The LRT test statistic is

λ(xn) =

∏5
i=1 p̂

Yj
0j∏5

i=1 p̂
Yj
j

where p̂j = Yj/n, p̂10 = p̂20 = p̂30 = (Y1 + Y2 + Y3)/n, p̂40 = p̂50 = (1 − 3p̂10)/2. These

calculations are on p 491. Make sure you understand them. Now we reject H0 if −2λ(Xn) >

χ2
3,α. �

7 p-values

When we test at a given level α we will reject or not reject. It is useful to summarize what

levels we would reject at and what levels we woud not reject at.

The p-value is the smallest α at which we would reject H0.

In other words, we reject at all α ≥ p. So, if the pvalue is 0.03, then we would reject at

α = 0.05 but not at α = 0.01.

Hence, to test at level α when p < α.
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Theorem 11 Suppose we have a test of the form: reject when W (Xn) > c. Then the p-value

when Xn = xn is

p(xn) = sup
θ∈Θ0

Pθ(W (Xn) ≥ W (xn)).

Example 12 X1, . . . , Xn ∼ N(θ, 1). Test that H0 : θ = θ0 versus H1 : θ 6= θ0. We reject

when |W | is large, where W =
√
n(Xn − θ0). So

p = Pθ0
(
|√n(Xn − θ0)| > w

)
= P (|Z| > w) = 2Φ(−|w|).

Theorem 13 Under H0, p ∼ Unif(0, 1).

Important. Note that p is NOT equal to P (H0|X1, . . . , Xn). The latter is a Bayesian

quantity which we will discuss later.

8 The Permutation Test

This is a very cool test. It is distribution free and it does not involve any asymptotic

approximations.

Suppose we have data

X1, . . . , Xn ∼ F

and

Y1, . . . , Ym ∼ G.

We want to test:

H0 : F = G versus H1 : F 6= G.

Let

Z = (X1, . . . , Xn, Y1, . . . , Ym).

Create labels

L = (1, . . . , 1︸ ︷︷ ︸
n values

, 2, . . . , 2︸ ︷︷ ︸
m values

).

9



A test statistic can be written as a function of Z and L. For example, if

W = |Xn − Y n|

then we can write

W =

∣∣∣∣∣

∑N
i=1 ZiI(Li = 1)∑N
i=1 I(Li = 1)

−
∑N

i=1 ZiI(Li = 2)∑N
i=1 I(Li = 2)

∣∣∣∣∣

where N = n+m. So we write W = g(L,Z).

Define

p =
1

N !

∑

π

I(g(Lπ, Z) > g(L,Z))

where Lπ is a permutation of the labels and the sum is over all permutations. Under H0,

permuting the labels does not change the distribution. In other words, g(L,Z) has an equal

chance of having any rank among all the permuted values. That is, under H0, ≈ Unif(0, 1)

and if we reject when p < α, then we have a level α test.

Summing over all permutations is infeasible. But it suffices to use a random sample of

permutations. So we do this:

1. Compute a random permutation of the labels and compute W . Do this K times giving

values W1, . . . ,WK .

2. Compute the p-value

1

K

K∑

j=1

I(Wj > W ).

9 The Score Test (Optional)

Recall that the score statistic is

S(θ) =
∂

∂θ
logf(X1, . . . , Xn; θ) =

n∑

i=1

∂

∂θ
logf(Xiθ).

Recall that EθS(θ) = 0 and VθS(θ) = In(θ). By the CLT,

Z =
S(θ0)√
In(θ0)

 N(0, 1)

10



under H0. So we reject if |Z| > zα/2. The advantage of the score test is that it does not

require maximizing the likelihood function.

Example 14 For the Binomial,

S(p) =
n(p̂n − p)
p(1− p) , In(p) =

n

p(1− p)

and so

Z =
p̂− p0√
p0(1−p0)

n

.

This is the same as the Wald test in this case.
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Lecture Notes 11

Interval Estimation (Confidence Intervals)

Chapter 9 and Chapter 10.4

1 Introduction

Find Cn = [L(X1, . . . , Xn), U(X1, . . . , Xn)] so that

Pθ

(
L(X1, . . . , Xn) ≤ θ ≤ U(X1, . . . , Xn)

)
≥ 1− α for all θ ∈ Θ.

In other words:

inf
θ∈Θ

Pθ

(
L(X1, . . . , Xn) ≤ θ ≤ U(X1, . . . , Xn)

)
≥ 1− α.

We say that Cn has coverage 1−α or that Cn is a 1−α confidence interval. Note that

Cn is random and θ is fixed (but unknown).

More generally, a 1− α confidence set Cn is a (random) set Cn ⊂ Θ such that

inf
θ∈Θ

Pθ

(
θ ∈ Cn(X1, . . . , Xn)

)
≥ 1− α.

Again, Cn is random, θ is not.

Example 1 Let X1, . . . , Xn ∼ N(θ, σ). Suppose that σ is known. Let L = L(X1, . . . , Xn) =

X − c and U = U(X1, . . . , Xn) = X + c. Then

Pθ(L ≤ θ ≤ U) = Pθ(X − c ≤ θ ≤ X + c)

= Pθ(−c < X − θ < c) = Pθ

(
−c
√
n

σ
<

√
n(X − θ)
σ

<
c
√
n

σ

)

= P

(
−c
√
n

σ
< Z <

c
√
n

σ

)
= Φ(c

√
n/σ)− Φ(−c√n/σ)

= 1− 2Φ(−c√n/σ) = 1− α

if we choose c = σzα/2/
√
n. So, if we define Cn = Xn ± σzα/2

√
n then

Pθ(θ ∈ Cn) = 1− α

for all θ.

1



Example 2 Xi ∼ N(θi, 1) for i = 1, . . . , n. Let

Cn = {θ ∈ Rn : ||X − θ||2 ≤ χ2
n,α}.

Then

Pθ(θ /∈ Cn) = Pθ(||X − θ||2 > χ2
n,α) = P (χ2

n > χ2
n,α) = α.

Four methods:

1. Probability Inequalities

2. Inverting a test

3. Pivots

4. Large Sample Approximations

Optimal confidence intervals are confidence intervals that are as short as possible but we

will not discuss optimality.

2 Using Probability Inequalities

Intervals that are valid for finite samples can be obtained by probability inequalities.

Example 3 Let X1, . . . , Xn ∼ Bernoulli(p). By Hoeffding’s inequality:

P(|p̂− p| > ε) ≤ 2e−2nε2 .

Let

εn =

√
1

2n
log

(
2

α

)
.

Then

P

(
|p̂− p| >

√
1

2n
log

(
2

α

))
≤ α.

Hence, P(p ∈ C) ≥ 1− α where C = (p̂− εn, p̂+ εn).
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Example 4 Let X1, . . . , Xn ∼ F . Suppose we want a confidence band for F . We can use

VC theory. Remember that

P
(

sup
x
|Fn(x)− F (x)| > ε

)
≤ 2e−2nε2 .

Let

εn =

√
1

2n
log

(
2

α

)
.

Then

P

(
sup
x
|Fn(x)− F (x)| >

√
1

2n
log

(
2

α

))
≤ α.

Hence,

PF (L(t) ≤ F (t) ≤ U(t) for all t) ≥ 1− α

for all F , where

L(t) = F̂n(t)− εn, U(t) = F̂n(t) + εn.

We can improve this by taking

L(t) = max
{
F̂n(t)− εn, 0

}
, U(t) = min

{
F̂n(t) + εn, 1

}
.

3 Inverting a Test

For each θ0, construct a level α test of H0 : θ = θ0 versus H1 : θ 6= θ0. Define φθ0(x
n) = 1

if we reject and φθ0(x
n) = 0 if we don’t reject. Let A(θ0) be the acceptance region, that is,

A(θ0) = {xn : φθ0(x
n) = 0}. Let

C(xn) = {θ : xn ∈ A(θ)} = {θ : φθ(x
n) = 0}.

Theorem 5 For each θ,

Pθ(θ ∈ C(xn)) = 1− α.

Proof. 1− Pθ(θ ∈ C(xn)) is the probability of rejecting θ when θ is true which is α. �
�
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The converse is also true: if C(xn) is a 1− α confidence interval then the test:

reject H0 if θ0 /∈ C(xn)

is a level α test.

Example 6 Suppose we use the LRT. We reject H0 when

L(θ0)

L(θ̂)
≤ c.

So

C =

{
θ :

L(θ)

L(θ̂)
≥ c

}
.

See Example 9.2.3 for a detailed example involving the exponential distribution.

Example 7 Let X1, . . . , Xn ∼ N(µ, σ2) with σ2 known. The LRT of H0 : µ = µ0 rejects

when

|X − µ0| ≥
σ√
n
zα/2.

So

A(µ) =

{
xn : |X − µ0| <

σ√
n
zα/2

}

and so µ ∈ C(Xn) if and only if

|X − µ| ≤ σ√
n
zα/2.

In other words,

C = X ± σ√
n
zα/2.

If σ is unknown, then this becomes

C = X ± S√
n
tn−1,α/2.

(Good practice question.)
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4 Pivots

A function Q(X1, . . . , Xn, θ) is a pivot if the distribution of Q does not depend on θ.

For example, if X1, . . . , Xn ∼ N(θ, 1) then

Xn − θ ∼ N(0, 1/n)

so Q = Xn − θ is a pivot.

Let a and b be such that

Pθ(a ≤ Q(X, θ) ≤ b) ≥ 1− α

for all θ. We can find such an a and b because Q is a pivot. It follows immediately that

C(x) = {θ : a ≤ Q(x, θ) ≤ b}

has coverage 1− α.

Example 8 Let X1, . . . , Xn ∼ N(µ, σ2). (σ known.) Then

Z =

√
n(X − µ)

σ
∼ N(0, 1).

We know that

P (−zα/2 ≤ Z ≤ zα/2) = 1− α

and so

P

(
−zα/2 ≤

√
n(X − µ)

σ
≤ zα/2

)
= 1− α.

Thus

C = X ± σ√
n
zα/2.

If σ is unknown, then this becomes

C = X ± S√
n
tn−1,α/2

because

T =

√
n(X − µ)

S
∼ tn−1.

5



Example 9 Let X1, . . . , Xn ∼ Uniform(0, θ). Let Q = X(n)/θ. Then

P(Q ≤ t) =
∏

i

P(Xi ≤ tθ) = tn

so Q is a pivot. Let cn = α1/n. Then

P(Q ≤ cn) = α.

Also, P(Q ≤ 1) = 1. Therefore,

1− α = P(c ≤ Q ≤ 1) = P
(
c ≤ X(n)

θ
≤ 1

)

= P
(

1

c
≥ θ

X(n)

≥ 1

)

= P
(
X(n) ≤ θ ≤ X(n)

c

)

so a 1− α confidence interval is (
X(n),

X(n)

α1/n

)
.

5 Large Sample Confidence Intervals

We know that, under regularity conditions,

θ̂n − θ
se

 N(0, 1)

where θ̂n is the mle and se = 1/

√
In(θ̂). So this is an asymptotic pivot and an approximate

confidence interval is

θ̂n ± zα/2se.

By the delta method, a confidence interval for τ(θ) is

τ(θ̂n)± zα/2se(θ̂)|τ ′(θ̂n)|.

By inverting the LRT and using the χ2 limiting distribution we get the LRT large sample

confidence set:

C =

{
θ : −2 log

(
L(θ)

L(θ̂)

)
≤ χ2

k,α

}
.

6



Then

Pθ(θ ∈ C)→ 1− α

for each θ.

Example 10 Let X1, . . . , Xn ∼ Bernoulli(p). Using the Wald statistic

p̂− p√ bp(1−bp)
n

 N(0, 1)

so an approximate confidence interval is

p̂± zα/2
√
p̂(1− p̂)

n
.

Using the LRT we get

C =

{
p : −2 log

(
pY (1− p)n−Y
p̂Y (1− p̂)n−Y

)
≤ χ2

1,α

}
.

These intervals are different but, for large n, they are nearly the same. A finite sample

interval can be constructed by inverting a test.

6 A Pivot For the cdf

Let X1, . . . , Xn ∼ F . We want to construct two functions L(t) ≡ L(t,X) and U(t) ≡ U(t,X)

such that

PF (L(t) ≤ F (t) ≤ U(t) for all t) ≥ 1− α

for all F .

Let

Kn = sup
x
|Fn(x)− F (x)|

where

Fn(x) =
1

n

n∑

i=1

I(Xi ≤ x) =
#{Xi ≤ x}

n

7



is the empirical distribiton function. We claim that Kn is a pivot. To see this, let Ui = F (Xi).

Then U1, . . . , Un ∼ Uniform(0, 1). So

Kn = sup
x
|Fn(x)− F (x)|

= sup
x

∣∣∣∣∣
1

n

n∑

i=1

I(Xi ≤ x)− F (x)

∣∣∣∣∣

= sup
x

∣∣∣∣∣
1

n

n∑

i=1

I(F (Xi) ≤ F (x))− F (x)

∣∣∣∣∣

= sup
x

∣∣∣∣∣
1

n

n∑

i=1

I(Ui ≤ F (x))− F (x)

∣∣∣∣∣

= sup
0≤t≤1

∣∣∣∣∣
1

n

n∑

i=1

I(Ui ≤ t)− t
∣∣∣∣∣

and the latter has a distribution depending only on U1, . . . , Un. We could find, by simulation,

a number c such that

P

(
sup

0≤t≤1

∣∣∣∣∣
1

n

n∑

i=1

I(Ui ≤ t)− t
∣∣∣∣∣ > c

)
= α.

A confidence set is then

C = {F : sup
x
|Fn(x)− F (x)| < c}.
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Lecture Notes 12

Nonparametric Inference

This is not in the text.

Suppose we want to estimate something without assuming a parametric model. Some

examples are:

1. Estimate the cdf F .

2. Estimate a density function p(x).

3. Estimate a regression function m(x) = E(Y |X = x).

4. Estimate a functional T (P ) of a distribution P for example T (P ) = E(X) =
∫
x p(x)dx.

1 The cdf and the Empirical Probability

We already solved this problem when we did VC theory. Given X1, . . . , Xn ∼ F where

Xi ∈ R we use,

F̂n(x) =
1

n

n∑

i=1

I(Xi ≤ x).

We saw that

P
(

sup
x
|F̂ (x)− F (x)| > ε

)
≤ 2e−2nε

2

.

Hence,

sup
x
|F̂ (x)− F (x)| P−→ 0

and

sup
x
|F̂ (x)− F (x)| = OP

(√
1

n

)
.

It can be shown that this is the minimax rate of convergence. In other words,

More generally, for Xi ∈ Rd, we set

Pn(A) =
1

n

n∑

i=1

I(Xi ∈ A).

1



We saw that, for any class A with VC dimension v,

P
(

sup
A∈A
|Pn(A)− P (A)| > ε

)
≤ c1n

ve−c2nε
2

.

2 Density Estimation

X1, . . . , Xn are iid with density p. For simplicity assume that Xi ∈ R. What happens if we

try to do maximum likelihood? The likelihood is

L(p) =
n∏

i=1

p(Xi).

We can make this as large as we want by making p highly peaked at each Xi. So supp L(p) =

∞ and the mle is the density that puts infinite spikes at each Xi.

We will need to put some restriction on p. For example

p ∈ P =

{
p : p ≥ 0,

∫
p = 1,

∫
|p′′(x)|2dx ≤ C

}
.

The most commonly used nonparametric density estimator is probably the histogram. An-

other common estimator is the kernel density estimator. A kernel K is a symmetric density

function with mean 0. The estimator is

p̂n(x) =
1

n

n∑

i=1

1

h
K

(
x−Xi

h

)

where h > 0 is called the bandwidth.

The bandwidth controls the smoothness of the estimator. Larger h makes f̂n smoother.

As a loss function we will use

L(p, p̂) =

∫
(p(x)− p̂(x))2dx.

The risk is

R = E (L(p, p̂)) =

∫
E(p(x)− p̂(x))2dx =

∫
(b2(x) + v(x))dx

where

b(x) = E(p̂(x))− p(x)

2



is the bias and

v(x) = Var(p̂(x)).

Let

Yi =
1

h
K

(
x−Xi

h

)
.

Then p̂n(x) = n−1
∑n

i=1 Yi and

E(p̂(x)) = E

(
1

n

n∑

i=1

Yi

)
= E(Yi)

= E
(

1

h
K

(
Xi − x
h

))

=

∫
1

h
K

(
u− x
h

)
p(u)du

=

∫
K(t)p(x+ ht)dt where u = x+ ht

=

∫
K(t)

(
p(x) + htp′(x) +

h2t2

2
p′′(x) + o(h2)

)
dt

= p(x)

∫
K(t)dt+ hp′(x)

∫
tK(t)dt+

h2

2
p′′(x)

∫
t2K(t)dt+ o(h2)dt

= (p(x)× 1) + (hp′(x)× 0) +
h2

2
p′′(x)κ+ o(h2)

where κ =
∫
t2K(t)dt. So

E(p̂(x)) ≈ p(x) +
h2

2
p′′(x)κ

and

b(x) ≈ h2

2
p′′(x)κ.

Thus ∫
b2(x)dx =

h4

4
κ2
∫

(p′′(x))2dx.

Now we compute the variance. We have

v(x) = Var

(
1

n

n∑

i=1

Yi

)
=

VarYi
n

=
E(Y 2

i )− (E(Yi))
2

n
.

3



Now

E(Y 2
i ) = E

(
1

h2
K2

(
Xi − x
h

))

=

∫
1

h2
K2

(
u− x
h

)
p(u)du

=
1

h

∫
K2(t)p(x+ ht)dt u = x + ht

≈ p(x)

h

∫
K2(t)dt =

p(x)ξ

h

where ξ =
∫
K2(t)dt. Now

(E(Yi))
2 ≈

(
p(x) +

h2

2
p′′(x)κ

)2

= f 2(x) +O(h2) ≈ f 2(x).

So

v(x) =
E(Y 2

i )

n
− (E(Yi))

2

n
≈ p(x)

nh
+ f 2(x) =

p(x)ξ

nh
+ o

(
1

nh

)
≈ p(x)ξ

nh

and ∫
v(x)dx ≈ ξ

nh
.

Finally,

R ≈ h4

4
κ2
∫

(p′′(x))2dx+
ξ

nh
= Ch4 +

ξ

nh
.

Note that

h ↑ −→ bias ↑, variance ↓

h ↓ −→ bias ↓, variance ↑ .

If we choose h = hn to satisfy

hn → 0, nhn →∞

then we see that p̂n(x)
P−→ p(x).

If we minimize over h we get

h =

(
ξ

4nC

)1/5

= O

(
1

n

)1/5

.
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This gives

R =
C1

n4/5

for some constant C1.

Can we do better? The answer, based on minimax theory, is no.

Theorem 1 There is a constant a such that

infbp sup
f∈F

R(f, p̂) ≥ a

n4/5
.

So the kernel estimator achieves the minimax rate of convergence. The histogram con-

verges at the sub-optimal rate of n−2/3. Proving these facts is beyond the scope of the

course.

There are many practical questions such as: how to choose h in practice, how to extend

to higher dimensions etc. These are discussed in 10-702 as well as other courses.

3 Regression

We observe (X1, Y1), . . . , (Xn, Yn). Given a new X we want to predict Y . If our prediction is

m(X) then the predictive loss os (Y −m(X))2. Later in the course we will discuss prediction

in detail and we will see that the optimal predictor is the regression function

m(x) = E(Y |X = x) =

∫
yp(y|x)dy.

The kernel estimator is

m̂n(x) =

∑n
i=1 YiK

(
x−Xi

h

)
∑n

i=1K
(
x−Xi

h

) .

The properties are similar to kernel density estimation. Again, you will study this in more

detail in some other classes.

4 Functionals

Let X1, . . . , Xn ∼ F . Let F be all distributions. A map T : F → R is called a statistical

functional.
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Notation. Let F be a distribution function. Let f denote the probability mass function if

F is discrete and the probability density function if F is continuous. The integral
∫
g(x)dF (x)

is interpreted as follows:

∫
g(x)dF (x) =





∑
j g(xj)p(xj) if F is discrete

∫
g(x)p(x)dx if F is continuous.

A statistical functional T (F ) is any function of of the cdf F . Examples include the

mean µ =
∫
x dF (x), the variance σ2 =

∫
(x−µ)2dF (x), the median m = F−1(1/2), and the

largest eigenvalue of the covariance matrix Σ.

The plug-in estimator of θ = T (F ) is defined by

θ̂n = T (F̂n).

A functional of the form
∫
a(x)dF (x) is called a linear functional. The empirical cdf F̂n(x)

is discrete, putting mass 1/n at each Xi. Hence, if T (F ) =
∫
a(x)dF (x) is a linear functional

then the plug-in estimator for linear functional T (F ) =
∫
a(x)dF (x) is:

T (F̂n) =

∫
a(x)dF̂n(x) =

1

n

n∑

i=1

a(Xi).

Let ŝe be an estimate of the standard error of T (F̂n). In many cases, it turns out that

θ̂n = T (F̂n) ≈ N(T (F ), ŝe2).

In that case, an approximate 1− α confidence interval for T (F ) is then

θ̂n ± zα/2 ŝe.

We can use the Wald statistic

W =
θ̂n − θ0

se

to do a hypothesis test.

6



Example 2 (The mean) Let µ = T (F ) =
∫
x dF (x). The plug-in estimator is µ̂ =

∫
x dF̂n(x) = Xn. The standard error is se =

√
Var(Xn) = σ/

√
n. If σ̂ denotes an es-

timate of σ, then the estimated standard error is ŝe = σ̂/
√
n. A Normal-based confidence

interval for µ is Xn ± zα/2 σ̂/
√
n.

Example 3 (The variance) Let σ2 = Var(X) =
∫
x2 dF (x) −

(∫
x dF (x)

)2
. The plug-in

estimator is

σ̂2 =

∫
x2dF̂n(x)−

(∫
xdF̂n(x)

)2

(1)

=
1

n

n∑

i=1

X2
i −

(
1

n

n∑

i=1

Xi

)2

(2)

=
1

n

n∑

i=1

(Xi −Xn)2. (3)

Example 4 (Quantiles) Let F be strictly increasing with density f . Let T (F ) = F−1(p)

be the pth quantile. The estimate of T (F ) is F̂−1n (p). We have to be a bit careful since F̂n is

not invertible. To avoid ambiguity we define F̂−1n (p) = inf{x : F̂n(x) ≥ p}. We call F̂−1n (p)

the pth sample quantile.

How do we estimate the standard error? There are two approaches. One is based on

something called the influence function which is a nonparametric version of the score func-

tion. We won’t cover that in this course. The second approach is to use the bootstrap which

we will discuss in an upcoming lecture.

5 Optional: The Influence Function

If you are curious what the influence is, I will describe it here. This section is optional and

you can skip it if you prefer.

The influence function is defined by

LF (x) = lim
ε→0

T
(
(1− ε)F + εδx

)
− T (F )

ε

7



where δx denote a point mass distribution at x: δx(y) = 0 if y < x and δx(y) = 1 if y ≥ x.

The empirical influence function is defined by

L̂(x) = lim
ε→0

T
(
(1− ε)F̂n + εδx

)
− T (F̂n)

ε
.

The influence function is the nonparametric version of the score function. More precisely,

it behaves like the score divided by the Fisher information, L = score/information = S/I.

Theorem 5 If T is Hadamard differentiable1 with respect to d(F,G) = supx |F (x) − G(x)|
then

√
n(T (F̂n)− T (F )) N(0, τ 2)

where τ 2 =
∫
L2
F (x)dF (x). Also,

(T (F̂n)− T (F ))

ŝe
 N(0, 1)

where ŝe = τ̂ /
√
n and

τ̂ =
1

n

n∑

i=1

L̂2(Xi).

We call the approximation (T (F̂n)−T (F ))/ŝe ≈ N(0, 1) the functional delta method

or the nonparametric delta method.

From the normal approximation, a large sample confidence interval is:

T (F̂n)± zα/2 ŝe.

Example 6 (The mean) Let θ = T (F ) =
∫
x dF (x). The plug-in estimator is θ̂ =

∫
x dF̂n(x) = Xn. Also, T ((1−ε)F+εδx) = (1−ε)θ+εx. Thus, L(x) = x−θ, L̂(x) = x−Xn

and ŝe2 = σ̂2/n where σ̂2 = n−1
∑n

i=1(Xi −Xn)2. A pointwise asymptotic nonparametric 95

percent confidence interval for θ is Xn ± 2 ŝe.

1Hadamard differentiability is a smoothness condition on T .
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Example 7 (Quantiles) Let F be strictly increasing with positive density f , and let T (F ) =

F−1(p) be the pth quantile. The influence function is

L(x) =





p−1
p(θ)

, x ≤ θ

p
p(θ)

, x > θ.

The asymptotic variance of T (F̂n) is

τ 2

n
=

1

n

∫
L2(x)dF (x) =

p(1− p)
nf 2(θ)

.

9



Lecture Notes 13

The Bootstrap

This is mostly not in the text.

1 Introduction

Can we estimate the mean of a distribution without using a parametric model? Yes. The

key idea is to first estimate the distribution function nonparametrically. Then we can get an

estimate of the mean (and many other parameters) from the distribution function.

How can we get the standard error of that estimator? The answer is: the bootstrap. The

bootstrap is a nonparametric method for finding standard errors and confidence intervals.

Notation. Let F be a distribution function. Let p denote the probability mass function if F

is discrete and the probability density function if F is continuous. The integral
∫
g(x)dF (x)

is interpreted as follows:

∫
g(x)dF (x) =





∑
j g(xj)p(xj) if F is discrete

∫
g(x)p(x)dx if F is continuous.

(1)

For 0 < α < 1 define zα by P(Z > zα) = α where Z ∼ N(0, 1). Thus zα = Φ−1(1 − α) =

−Φ−1(α).

2 Review of The Empirical Distribution Function

The bootstrap uses the empirical distribution function. Let X1, . . . , Xn ∼ F where F (x) =

P(X ≤ x) is a distribution function on the real line. We can estimate F with the empirical

distribution function F̂n, the cdf that puts mass 1/n at each data point Xi.

Recall that the empirical distribution function F̂n is defined by

F̂n(x) =
1

n

n∑

i=1

I(Xi ≤ x) (2)

1



where

I(Xi ≤ x) =





1 if Xi ≤ x

0 if Xi > x.
(3)

From (1) it follows that
∫
g(x)dF̂n(x) = n−1

∑n
i=1 g(Xi). According to the Glivenko–

Cantelli Theorem,

sup
x
|F̂n(x)− F (x)| as−→ 0. (4)

Hence, F̂n is a consistent estimator of F . In fact, the convergence is fast. According to the

Dvoretzky–Kiefer–Wolfowitz (DKW) inequality, for any ε > 0,

P
(

sup
x
|F (x)− F̂n(x)| > ε

)
≤ 2e−2nε

2

. (5)

If εn = cn/
√
n where cn → ∞, then P(supx |F (x) − F̂n(x)| > εn) → 0. Hence, supx |F (x) −

F̂n(x)| = OP (n−1/2).

3 Statistical Functionals

Recall that a statistical functional T (F ) is any function of of the cdf F . Examples include

the mean µ =
∫
x dF (x), the variance σ2 =

∫
(x− µ)2dF (x), m = F−1(1/2), and the largest

eigenvalue of the covariance matrix Σ.

The plug-in estimator of θ = T (F ) is defined by

θ̂n = T (F̂n). (6)

Let ŝe be an estimate of the standard error of T (F̂n). (We will see how to get this later.)

In many cases, it turns out that

T (F̂n) ≈ N(T (F ), ŝe2). (7)

In that case, an approximate 1− α confidence interval for T (F ) is then

T (F̂n)± zα/2 ŝe. (8)

2



Example 1 (The mean) Let µ = T (F ) =
∫
x dF (x). The plug-in estimator is µ̂ =

∫
x dF̂n(x) = Xn. The standard error is se =

√
Var(Xn) = σ/

√
n. If σ̂ denotes an es-

timate of σ, then the estimated standard error is ŝe = σ̂/
√
n. A Normal-based confidence

interval for µ is Xn ± zα/2 σ̂/
√
n.

Example 2 A functional of the form
∫
a(x)dF (x) is called a linear functional. (Recall

that
∫
a(x)dF (x) is defined to be

∫
a(x)p(x)dx in the continuous case and

∑
j a(xj)p(xj) in

the discrete case.) The empirical cdf F̂n(x) is discrete, putting mass 1/n at each Xi. Hence,

if T (F ) =
∫
a(x)dF (x) is a linear functional then the plug-in estimator for linear functional

T (F ) =
∫
a(x)dF (x) is:

T (F̂n) =

∫
a(x)dF̂n(x) =

1

n

n∑

i=1

a(Xi). (9)

Example 3 (The variance) Let σ2 = Var(X) =
∫
x2 dF (x) −

(∫
x dF (x)

)2
. The plug-in

estimator is

σ̂2 =

∫
x2dF̂n(x)−

(∫
xdF̂n(x)

)2

(10)

=
1

n

n∑

i=1

X2
i −

(
1

n

n∑

i=1

Xi

)2

(11)

=
1

n

n∑

i=1

(Xi −Xn)2. (12)

Example 4 (The skewness) Let µ and σ2 denote the mean and variance of a random

variable X. The skewness — which measures the lack of symmetry of a distribution — is

defined to be

κ =
E(X − µ)3

σ3
=

∫
(x− µ)3dF (x)

{∫
(x− µ)2dF (x)

}3/2 . (13)

To find the plug-in estimate, first recall that µ̂ = n−1
∑n

i=1Xi and σ̂2 = n−1
∑n

i=1(Xi − µ̂)2.

The plug-in estimate of κ is

κ̂ =

∫
(x− µ)3dF̂n(x)

{∫
(x− µ)2dF̂n(x)

}3/2
=

1
n

∑n
i=1(Xi − µ̂)3

σ̂3
. (14)
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Example 5 (Correlation) Let Z = (X, Y ) and let ρ = T (F ) = E(X−µX)(Y −µY )/(σxσy)

denote the correlation between X and Y , where F (x, y) is bivariate. We can write T (F ) =

a(T1(F ), T2(F ), T3(F ), T4(F ), T5(F )) where

T1(F ) =
∫
x dF (z) T2(F ) =

∫
y dF (z) T3(F ) =

∫
xy dF (z)

T4(F ) =
∫
x2 dF (z) T5(F ) =

∫
y2 dF (z)

(15)

and

a(t1, . . . , t5) =
t3 − t1t2√

(t4 − t21)(t5 − t22)
. (16)

Replace F with F̂n in T1(F ), . . . , T5(F ), and take

ρ̂ = a(T1(F̂n), T2(F̂n), T3(F̂n), T4(F̂n), T5(F̂n)). (17)

We get

ρ̂ =

∑n
i=1(Xi −Xn)(Yi − Y n)√∑n

i=1(Xi −Xn)2
√∑n

i=1(Yi − Y n)2
(18)

which is called the sample correlation.

Example 6 (Quantiles) Let F be strictly increasing with density f . Let T (F ) = F−1(p)

be the pth quantile. The estimate of T (F ) is F̂−1n (p). We have to be a bit careful since F̂n is

not invertible. To avoid ambiguity we define F̂−1n (p) = inf{x : F̂n(x) ≥ p}. We call F̂−1n (p)

the pth sample quantile.

4 The Bootstrap

Let Tn = g(X1, . . . , Xn) be a statistic and let VarF (Tn) denote the variance of Tn. We have

added the subscript F to emphasize that the variance is itself a function of F . In other

words

VarF (Tn) =

∫ ∫
· · ·
∫

(g(X1, . . . , Xn)− µ)2dF (x1)dF (x2) · · · dF (xn)

where

µ = E(Tn) =

∫ ∫
· · ·
∫
g(X1, . . . , Xn)dF (x1)dF (x2) · · · dF (xn).

4



If we knew F we could, at least in principle, compute the variance. For example, if Tn =

n−1
∑n

i=1Xi, then

VarF (Tn) =
σ2

n
=

∫
x2dF (x)−

(∫
xdF (x)

)2

n
. (19)

In other words, the variance of θ̂ = T (Fn) is itself a function of F . We can write

VarF (Tn) = U(F )

for some U . Therefore, to estimate VarF (Tn) we can use

̂VarF (Tn) = U(F̂n).

This is the bootstrap estimate of the standard error. To repeat: we estimate U(F ) =

VarF (Tn) with U(F̂n) = Var bFn
(Tn). In other words, we use a plug-in estimator of the variance.

But how can we compute Var bFn
(Tn)? We approximate it with a simulation estimate

denoted by vboot. Specifically, we do the following steps:

Bootstrap Variance Estimation

1. Draw X∗1 , . . . , X
∗
n ∼ F̂n.

2. Compute T ∗n = g(X∗1 , . . . , X
∗
n).

3. Repeat steps 1 and 2, B times to get T ∗n,1, . . . , T
∗
n,B.

4. Let

vboot =
1

B

B∑

b=1

(
T ∗n,b −

1

B

B∑

r=1

T ∗n,r

)2

. (20)

By the law of large numbers, vboot
as−→Var bFn

(Tn) as B → ∞. The estimated standard

error of Tn is ŝeboot =
√
vboot. The following diagram illustrates the bootstrap idea:

Real world: F =⇒ X1, . . . , Xn =⇒ Tn = g(X1, . . . , Xn)

Bootstrap world: F̂n =⇒ X∗1 , . . . , X
∗
n =⇒ T ∗n = g(X∗1 , . . . , X

∗
n)

5



Bootstrap for the Median

Given data X = (X(1), ..., X(n)):

T = median(X)

Tboot = vector of length B

for(i in 1:N){

Xstar = sample of size n from X (with replacement)

Tboot[i] = median(Xstar)

}

se = sqrt(variance(Tboot))

Figure 1: Pseudo-code for bootstrapping the median.

VarF (Tn)

O(1/
√
n)︷︸︸︷≈ Var bFn

(Tn)

O(1/
√
B)︷︸︸︷≈ vboot. (21)

How do we simulate from F̂n? Since F̂n gives probability 1/n to each data point, drawing

n points at random from F̂n is the same as drawing a sample of size n with replacement from

the original data. Therefore step 1 can be replaced by:

1. Draw X∗1 , . . . , X
∗
n with replacement from X1, . . . , Xn.

Example 7 Figure 1 shows pseudo-code for using the bootstrap to estimate the standard

error of the median.

5 The Parametric Bootstrap

So far, we have estimated F nonparametrically. There is also a parametric bootstrap.

If Fθ depends on a parameter θ and θ̂ is an estimate of θ, then we simply sample from Fbθ
6



instead of F̂n. This is just as accurate, but much simpler than, the delta method. Here is

more detail.

Suppose that X1, . . . , Xn ∼ p(x; θ). Let θ̂ be the mle. Let τ = g(θ). Then τ̂ = g(θ̂). To

get the standard error of τ̂ we need to compute the Fisher information and then do the delta

method. The bootstrap allows us to avoid both steps. We just do the following:

1. Compute the estimate θ̂ from the data X1, . . . , Xn.

2. Draw a sample X∗1 , . . . , X
∗
n ∼ f(x; θ̂). Compute θ̂∗1 and τ̂ ∗1 = g(θ̂∗1) from the new data.

Repeat B times to get τ̂ ∗1 , . . . , τ̂
∗
B.

3. Compute the standard deviation

ŝe =
1

B

B∑

b=1

(τ̂ ∗j − τ)2 where τ =
1

B

B∑

b=1

τ̂ ∗j . (22)

No need to get the Fisher information or do the delta method.

6 Bootstrap Confidence Intervals

There are several ways to construct bootstrap confidence intervals. They vary in ease of

calculation and accuracy.

Normal Interval. The simplest is the Normal interval

θ̂n ± zα/2 ŝeboot (23)

where ŝeboot is the bootstrap estimate of the standard error.

Pivotal Intervals. Let θ = T (F ) and θ̂n = T (F̂n). We can also construct an approxi-

mate confidence interval for θ using the (approximate) pivot
√
n(θ̂∗ − θ̂) as follows:

C =

(
θ̂n −

H̆−1
(
1− α

2

)
√
n

, θ̂n −
H̆−1

(
α
2

)
√
n

)
(24)

7



where

H̆(r) =
1

B

B∑

j=1

I
(√

n(θ̂∗j − θ̂) ≤ r
)

(25)

where

H(r) = P
(√

n(θ̂n − θ) ≤ r
)
, Ĥ(r) = Pn

(
I
(√

n(θ̂∗j − θ̂) ≤ r
)
. (26)

Theorem 8 Under appropriate conditions on T , supu |H(u) − Ĥ(u)| P→ 0 as n → ∞ and

supu |Ĥ(u)− H̆(u)| P→ 0 as B →∞.

Now we can show that the confidence interval has coverage that is approximately equal

to 1− α. Applying Theorem 8 we have

P(θ ∈ C) = P

(
θ̂n −

H̆−1
(
1− α

2

)
√
n

≤ θ ≤ θ̂n −
H̆−1

(
α
2

)
√
n

)

= P
(
H̆−1

(α
2

)
≤ √n(θ̂n − θ) ≤ H̆−1

(
1− α

2

))

= H
(
H̆−1

(
1− α

2

))
−H

(
H̆−1

(α
2

))

≈ H
(
Ĥ−1

(
1− α

2

))
−H

(
Ĥ−1

(α
2

))

≈ H
(
H−1

(
1− α

2

))
−H

(
H−1

(α
2

))

=
(

1− α

2

)
− α

2
= 1− α.

7 Remarks About The Bootstrap

1. The bootstrap is nonparametric but it does require some assumptions. You can’t

assume it is always valid. (See the appendix.)

2. The bootstrap is an asymptotic method. Thus the coverage of the confidence interval

is 1− α + rn where the remainder rn → 0 as n→∞.

3. There is a related method called the jackknife where the standard error is estimated by

leaving out one observation at a time. However, the bootstrap is valid under weaker

conditions than the jackknife. See Shao and Tu (1995).

8



4. Another way to construct a bootstrap confidence interval is to set C = [a, b] where a is

the α/2 quantile of θ̂∗1, . . . , θ̂
∗
B and b is the 1−α/2 quantile. This is called the percentile

interval. This interval seems very intuitive but does not have the theoretical support

of the interval in (24). However, in practice, the percentile interval and the interval in

(24) are often quite similar.

5. There are many cases where the bootstrap is not formally justified. This is especially

true with discrete structures like trees and graphs. Nonethless, the bootstrap can be

used in an informal way to get some intuition of the variability of the procedure. But

keep in mind that the formal guarantees may not apply in these cases. For example,

see Holmes (2003) for a discussion of the bootstrap applied to phylogenetic tres.

6. There is an improvement on the bootstrap called subsampling. In this case, we draw

samples of size m < n without replacement. Subsampling produces valid confidence

intervals under weaker conditions than the bootstrap. See Politis, Romano and Wolf

(1999).

7. There are many modifications of the bootstrap that lead to more accurate confidence

intervals; see Efron (1996).

8 Examples

Example 9 (The Median) The top left plot of Figure 2 shows the density for a χ2 dis-

tribution with 4 degrees of freedom. The top right plot shows a histogam of n = 50 draws

from this distribution. Let θ = T (P ) be the median. The true value is θ = 3.36. The samlpe

median turns out to be θ̂n = 3.22. We computed B = 1000 bootstrap values θ̂∗1, . . . , θ̂
∗
B shown

in the histogram (bottom left plot). The estimated standard error is 0.35. This is smaller

than the true standard error which is 0.44.

Next we conducted a small simulation. We drew a sample of size n and computed the 95

percent bootstrap confidence interval. We repeated this process N = 100 times. The bottom

right plot shows the 100 intervals. The vertical line is the true value of θ. The percentage

9
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Figure 2: Top left: density of a χ2 with 4 degrees of freedom. The vertical line shows the

median. Top right: n = 50 draw from the distribution. Bottom left: B = 1000 boostrap

values θ̂∗1, . . . , θ̂
∗
B. Bottom right: Bootstrap confidence intervals from 100 experiments.

of intervals that cover θ is 0.83 which shows that the bootstrap interval undercovers in this

case.

Example 10 (Nonparametric Regression) The bootstrap is often used informally to get

a sense of the variability of a procedure. Consider the data (X1, Y1), . . . , (Xn, Yn) in the

top left plot of Figure 3. To estimate the regression function m(x) = E(Y |X = x) we

use a kernel regression estimator given by m̂(x) =
∑n

i=1 Yiwi(x) where wi(x) = K((x −
Xi)/h)/

∑
jK((x − Xj)/h) and K(x) = e−x

2/2 is a Gaussian kernel. The estimated curve

is shown in the top right plot. We now create B = 1, 000 boostrap replications resulting in

curves m̂∗1, . . . , m̂
∗
B in the bottom left plot. At each x, we find the .025 and .975 quantile of

10



the bootstrap replications. This reults in the upper and lower band in the bottom right plot.

The bootstrap reveals greater variability in the estimated curve around x = −0.5. The reason

why we call this an informal use of the bootstrap is that the bands shown in the lower right

plot are not rigorous confidence bands. There are several reasons for this. First, we used a

percentile interval (described in the earlier list of remarks) rather than the interval defined by

(24). Second, we have not adjusted for the fact that we are making simultaneous bands over

all x. Finally, the theory of the bootstrap does not directly apply to nonparametric smoothing.

Roughly speaking, we are really creating approximate confidence intervals for E(m̂(x)) rather

than for m(x). Despite these shortcomings, the bootstrap is still regarded as a useful tool

here but we must keep in mind that it is being used in an informal way. Some authors refer

to the bands as variability bands rather than confidence bands for this reason.

Example 11 (Estimating Eigenvalues) Let X1, . . . , Xn be random vectors where Xi ∈
Rp and let Σ be the covariance matrix of Xi. A common dimension reduction technique is

principal components which involves finding the spectral decomposition Σ = EΛET where the

columns of E are the eigenvectors of Σ and Λ is a diagonal matrix whose diagonal elements

are the ordered eigenvalues λ1 ≥ · · · ≥ λp. The data dimension can be reduced to q < p by

projecting each data point onto the first q eigenvalues. We choose q such that
∑p

j=q+1 λ
2
j is

small. Of course, we need to estimate the eigenvectors and eigenvalues. For now, let us focus

on estimating the largest eigenvalue and denote this by θ. An estimate of θ is the largest

principal component θ̂ of the sample covariance matrix

S =
1

n

n∑

i=1

(Xi −X)(Xi −X)T . (27)

It is not at all obvious how can can estimate the standard error of θ̂ or how to find a confidence

interval for θ. In this example, the bootstrap works as follows. Draw a sample of size n with

replacement from X1, . . . , Xn. The new sample is denoted by X∗1 , . . . , X
∗
n. Compute the

sample covariance matrix S∗ of the new data and let θ̂∗ denote the largest eigenvector of S∗.

Repeat this process B times where B is typically about 10,000. This yields bootstrap values

11
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Figure 3: Top left: the data (X1, Y1), . . . , (Xn, Yn). Top right: kernel regression estimator.

Bottom left: 1,000 bootstrap replications. Bottom right: 95 percent variability bands.

.
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θ̂∗1, . . . , θ̂
∗
B. The standard deviation of θ̂∗1, . . . , θ̂

∗
B is an estimate of the standard error of the

original estimator θ̂.

Figure 4 shows a PCA analysis of US arrest data. The last plot shows bootstrap replica-

tions of the first principal component.

Example 12 (Median Regression) Consider the linear regression model

Yi = XT
i β + εi. (28)

Instead of using least squares to estimate β, define β̂ to minimize

median|Yi −XT
i β|. (29)

The resulting estimator β̂ is more resistant to outliers than the least squares estimator. But

how can we find the standard error of β̂? Using the bootstrap approach, we resample the pairs

of data to get the bootstrap sample (X∗1 , Y
∗
1 ), . . . , (X∗nY

∗
n ) and then we get the corresponding

bootstrap estimate β̂∗. We can repeat this many times and use the standard deviation of the

bootstrap estimates to estimate the standard error of β̂. Figure 5 shows bootstrap replications

of fits from regression and robust regression (minimizing L1 error instead of squared error)

in a dataset with an outlier.

Warning! The bootstrap is not magic. Its validity requires some conditions to hold.

When the conditions don’t hold, the bootstrap, like any method, can give misleading answers.
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Lecture Notes 14

Bayesian Inference

Relevant material is scattered throughout the book: see sections 7.2.3, 8.2.2, 9.2.4 and

9.3.3. We will also cover some material that is not in the book.

1 Introduction

So far we have been using frequentist (or classical) methods. In the frequentist approach,

probability is interpreted as long run frequencies. The goal of frequentist inference is to

create procedures with long run guarantees. Indeed, a better name for frequentist inference

might be procedural inference. Moreover, the guarantees should be uniform over θ if possible.

For example, a confidence interval traps the true value of θ with probability 1−α, no matter

what the true value of θ is. In frequentist inference, procedures are random while

parameters are fixed, unknown quantities.

In the Bayesian approach, probability is regarded as a measure of subjective degree of

belief. In this framework, everything, including parameters, is regarded as random. There

are no long run frequency guarantees. Bayesian inference is quite controversial.

Note that when we used Bayes estimators in minimax theory, we were not doing Bayesian

inference. We were simply using Bayesian estimators as a method to derive minimax esti-

mators.

2 The Mechanics of Bayes

Let X1, . . . , Xn ∼ p(x|θ). In Bayes we also include a prior π(θ). It follows from Bayes’

theorem that the posterior distribution of θ given the data is

π(θ|X1, . . . , Xn) =
p(X1, . . . , Xn|θ)π(θ)

m(X1, . . . , Xn)

where

m(X1, . . . , Xn) =

∫
p(X1, . . . , Xn|θ)π(θ)dθ.

1



Hence,

π(θ|X1, . . . , Xn) ∝ L(θ)π(θ)

where L(θ) = p(X1, . . . , Xn|θ) is the likelihood function. The interpretation is that π(θ|X1, . . . , Xn)

represents your subjective beliefs about θ after observing X1, . . . , Xn.

A commonly used point estimator is the posterior mean

θ = E(θ|X1, . . . , Xn) =

∫
θπ(θ|X1, . . . , Xn)dθ =

∫
θL(θ)π(θ)∫
L(θ)π(θ)

.

For interval estimation we use C = (a, b) where a and b are chosen so that
∫ b

a

π(θ|X1, . . . , Xn) = 1− α.

This interpretation is that

P (θ ∈ C|X1, . . . , Xn) = 1− α.

This does not mean that C traps θ with probability 1− α. We will discuss the distinction

in detail later.

Example 1 Let X1, . . . , Xn ∼ Bernoulli(p). Let the prior be p ∼ Beta(α, β). Hence

π(p) =
Γ(α + β)

Γ(α)Γ(β)

and

Γ(α) =

∫ ∞

0

tα−1e−tdt.

Set Y =
∑

iXi. Then

π(p|X) ∝ pY 1− pn−Y︸ ︷︷ ︸
likelihood

× pα−11− pβ−1︸ ︷︷ ︸
prior

∝ pY+α−11− pn−Y+β−1.

Therefore, p|X ∼ Beta(Y + α, n − Y + β). (See page 325 for more details.) The Bayes

estimator is

p̃ =
Y + α

(Y + α) + (n− Y + β)
=

Y + α

α + β + n
= (1− λ)p̂mle + λ p

where

p =
α

α + β
, λ =

α + β

α + β + n
.

This is an example of a conjugate prior.

2



Example 2 Let X1, . . . , Xn ∼ N(µ, σ2) with σ2 known. Let µ ∼ N(m, τ 2). Then

E(µ|X) =
τ 2

τ 2 + σ2

n

X +
σ2

n

τ 2 + σ2

n

m

and

Var(µ|X) =
σ2τ 2/n

τ 2 + σ2

n

.

3 Where Does the Prior Come From?

This is the million dollar question. In principle, the Bayesian is supposed to choose a prior

π that represents their prior information. This will be challenging in high dimensional cases

to say the least. Also, critics will say that someone’s prior opinions should not be included

in a data analysis because this is not scientific.

There has been some effort to define “noninformative priors” but this has not worked

out so well. An example is the Jeffreys prior which is defined to be

π(θ) ∝
√
I(θ).

You can use a flat prior but be aware that this prior doesn’t retain its flatness under trans-

formations. In high dimensional cases, the prior ends up being highly influential. The result

is that Bayesian methds tend to have poor frequentist behavior. We’ll return to this point

soon.

It is common to use flat priors even if they don’t integrate to 1. This is posible since the

posterior might still integrate to 1 even if the prior doesn’t.

4 Large Sample Theory

There is a Bayesian central limit theorem. In nice models, with large n,

π(θ|X1, . . . , Xn) ≈ N

(
θ̂,

1

In(θ̂)

)
(1)

3



where θ̂n is the mle and I is the Fisher information. In these cases, the 1 − α Bayesian

intervals will be approximately the same as the frequentist confidence intervals. That is, an

approximate 1− α posterior interval is

C = θ̂ ± zα/2√
In(θ̂)

which is the Wald confidence interval. However, this is only true if n is large and the

dimension of the model is fixed.

Here is a rough derivation of (1). Note that

log π(θ|X1, . . . , Xn) =
n∑

i=1

log p(Xi|θ) + log π(θ)− logC

where C is the normalizing constant. Now the sum has n terms which grows with sample

size. The last two terms are O(1). So the sum dominates, that is,

log π(θ|X1, . . . , Xn) ≈
n∑

i=1

log p(Xi|θ) = `(θ).

Next, we note that

`(θ) ≈ `(θ̂) + (θ − θ̂)`′(θ̂) +
(θ − θ̂)2`′′(θ̂)

2
.

Now `′(θ̂) = 0 so

`(θ) ≈ `(θ̂) +
(θ − θ̂)2`′′(θ̂)

2
.

Thus, approximately,

π(θ|X1, . . . , Xn) ∝ exp

(
−(θ − θ̂)2

2σ2

)

where

σ2 = − 1

`′′(θ̂)
.

Let `i = log p(Xi|θ̂0) where θ0 is the true value. Since θ̂ ≈ θ0,

`′′(θ̂) ≈ `′′(θ0) =
∑

i

`′′i = n
1

n

∑

i

`′′i ≈ −nI1(θ0) ≈ −nI1(θ̂) = −In(θ̂)

and therefore, σ2 ≈ 1/In(θ̂).
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5 Bayes Versus Frequentist

In general, Bayesian and frequentist inferences can be quite different. If C is a 1−α Bayesian

interval then

P (θ ∈ C|X) = 1− α.

This does not imply that

frequentist coverage = inf
θ
Pθ(θ ∈ C) = 1− α..

Typically, a 1 − α Bayesian interval has coverage lower than 1 − α. Suppose you wake

up everyday and produce a Bayesian 95 percent interval for some parameter. (A different

parameter everyday.) The fraction of times your interval contains the true parameter will

not be 95 percent. Here are some examples to make this clear.

Example 3 Normal means. Let Xi ∼ N(µi, 1), i = 1, . . . , n. Suppose we use the flat

prior π(µ1, . . . , µn) ∝ 1. Then, with µ = (µ1, . . . , µn), the posterior for µ is multivariate

Normal with mean X = (X1, . . . , Xn) and covariance matrix equal to the identity matrix.

Let θ =
∑n

i=1 µ
2
i . Let Cn = [cn,∞) where cn is chosen so that P(θ ∈ Cn|X1, . . . , Xn) = .95.

How often, in the frequentist sense, does Cn trap θ? Stein (1959) showed that

Pµ(θ ∈ Cn)→ 0, as n→∞.

Thus, Pµ(θ ∈ Cn) ≈ 0 even though P(θ ∈ Cn|X1, . . . , Xn) = .95.

Example 4 Sampling to a Foregone Conclusion. Let X1, X2, . . . ∼ N(θ, 1). Suppose

we continue sampling until T > k where T =
√
n|Xn| and k is a fixed number, say, k = 20.

The sample size N is now a random variable. It can be shown that P(N < ∞) = 1. It

can also be shown that the posterior π(θ|X1, . . . , XN) is the same as if N had been fixed

in advance. That is, the randomness in N does not affect the posterior. Now if the prior

π(θ) is smooth then the posterior is approximately θ|X1, . . . , XN ∼ N(Xn, 1/n). Hence, if

Cn = Xn ± 1.96/
√
n then P(θ ∈ Cn|X1, . . . , XN) ≈ .95. Notice that 0 is never in Cn since,

when we stop sampling, T > 20, and therefore

Xn −
1.96√
n
>

20√
n
− 1.96√

n
> 0. (2)
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Hence, when θ = 0, Pθ(θ ∈ Cn) = 0. Thus, the coverage is

Coverage = inf
θ
Pθ(θ ∈ Cn) = 0.

This is called sampling to a foregone conclusion and is a real issue in sequential clinical

trials.

Example 5 Here is an example we discussed earlier. Let C = {c1, . . . , cN} be a finite set

of constants. For simplicity, asssume that cj ∈ {0, 1} (although this is not important). Let

θ = N−1
∑N

j=1 cj. Suppose we want to estimate θ. We proceed as follows. Let S1, . . . , Sn ∼
Bernoulli(π) where π is known. If Si = 1 you get to see ci. Otherwise, you do not. (This is

an example of survey sampling.) The likelihood function is

∏

i

πSi(1− π)1−Si .

The unknown parameter does not appear in the likelihood. In fact, there are no unknown

parameters in the likelihood! The likelihood function contains no information at all. The

posterior is the same as the prior.

But we can estimate θ. Let

θ̂ =
1

Nπ

N∑

j=1

cjSj.

Then E(θ̂) = θ. Hoeffding’s inequality implies that

P(|θ̂ − θ| > ε) ≤ 2e−2nε
2π2

.

Hence, θ̂ is close to θ with high probability. In particular, a 1 − α confidence interval is

θ̂ ±
√

log(2/α)/(2nπ2).

6 Bayesian Computing

If θ = (θ1, . . . , θp) is a vector then the posterior π(θ|X1, . . . , Xn) is a multivariate distribution.

If you are interested in one parameter, θ1 for example, then you need to find the marginal

posterior:

π(θ1|X1, . . . , Xn) =

∫
π(θ1, . . . , θp|X1, . . . , Xn)dθ2 · · · dθp.

6



Usually, this integral is intractable. In practice, we resort to Monte Carlo methods. These

are discussed in 36/10-702.

7 Bayesian Hypothesis Testing

Bayesian hypothesis testing can be done as follows. Suppose that θ ∈ R and we want to test

H0 : θ = θ0 and H1 : θ 6= θ0.

If we really believe that there is a positive prior probability that H0 is true then we can use

a prior of the form

aδθ0 + (1− a)g(θ)

where 0 < a < 1 is the prior probability that H0 is true and g is a smooth prior density over

θ which represents our prior beliefs about θ when H0 is false. It follows from Bayes’ theorem

that

P (θ = θ0|X1, . . . , Xn) =
ap(X1, . . . , Xn|θ0)

ap(X1, . . . , Xn|θ0) + (1− a)
∫
p(X1, . . . , Xn|θ)g(θ)dθ

=
aL(θ0)

aL(θ0) + (1− a)m

where m =
∫
L(θ)g(θ)dθ. It can be shown that P (θ = θ0|X1, . . . , Xn) is very sensitive to the

choice of g.

Sometimes, people like to summarize the test by using the Bayes factor B which is defined

to be the posterior odds divided by the prior odds:

B =
posterior odds

prior odds

where

posterior odds =
P (θ = θ0|X1, . . . , Xn)

1− P (θ = θ0|X1, . . . , Xn)

=

aL(θ0)
aL(θ0)+(1−a)m

(1−a)m
aL(θ0)+(1−a)m

=
aL(θ0)

(1− a)m

7



and

prior odds =
P (θ = θ0)

P (θ 6= θ0)
=

a

1− a
and hence

B =
L(θ0)

m
.

Example 6 Let X1, ldots,Xn ∼ N(θ, 1). Let’s test H0 : θ = 0 versus H1 : θ 6= 0. Suppose

we take g(θ) to be N(0, 1). Thus,

g(θ) =
1√
2π
e−θ

2/2.

Let us further take a = 1/2. Then, after some tedious integration to compute m(X1, . . . , Xn)

we get

P (θ = θ0|X1, . . . , Xn) =
L(0)

L(0) +m

=
e−nX

2
/2

e−nX
2
/2 +

√
n
n+1

e−nX
2
/(2(n+1))

.

On the other hand, the p-value for the usual test is p = 2Φ(−√n|X|). Figure 1 shows

the posterior of H0 and the p-value as a function of X when n = 100. Note that they are

very different. Unlike in estimation, in testing there is little agreement between Bayes and

frequentist methods.

8 Conclusion

Bayesian and frequentist inference are answering two different questions. Frequentist infer-

ence answers the question:

How do I construct a procedure that has frequency guarantees?

Bayesian inference answers the question:

How do I update my subjective beliefs after I observe some data?

In parametric models, if n is large and the dimension of the model is fixed, Bayes and

frequentist procedures will be similar. Otherwise, they can be quite different.

8
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Figure 1: Solid line: P (θ = 0|X1, . . . , Xn) versus X. Dashed line: p-value versus X.
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Lecture Notes 15

Prediction

This is mostly not in the text. Some relevant material is in Chapters 11 and

12.

1 Introduction

We observe training data (X1, Y1), . . . , (Xn, Yn). Given a new pair (X, Y ) we want to predict

Y from X. There are two common versions:

1. Y ∈ {0, 1}. This is called classification, or discrimination, or pattern recognition.

(More generally, Y can be discrete.)

2. Y ∈ R. This is called regression.

For classification we will use the following loss function. Let h(x) be or prediction of Y

when X = x. Thus h(x) ∈ {0, 1}. The function h is called a classifier. The classification

loss is I(Y 6= h(X)) and the the classification risk is

R(h) = P(Y 6= h(X)) = E(I(Y 6= h(X))).

For regression, suppose our prediction of Y when X = x is g(x). We will use the squared

error prediction loss (Y − g(X))2 and the risk is

R(g) = E(Y − g(X))2.

2 Regression

Theorem 1 R(g) is minimized by

m(x) = E(Y |X = x) =

∫
y p(y|x)dy.

1



Proof. Let g(x) be any function of x. Then

R(g) = E(Y − g(X))2 = E(Y −m(X) +m(X)− g(X))2

= E(Y −m(X))2 + E(m(X)− g(X))2 + 2E((Y −m(X))(m(X)− g(X)))

≥ E(Y −m(X))2 + 2E((Y −m(X))(m(X)− g(X)))

= E(Y −m(X))2 + 2EE

(
(Y −m(X))(m(X)− g(X))

∣∣∣∣∣ X
)

= E(Y −m(X))2 + 2E

(
(E(Y |X)−m(X))(m(X)− g(X))

)

= E(Y −m(X))2 + 2E

(
(m(X)−m(X))(m(X)− g(X))

)

= E(Y −m(X))2 = R(m).

�
Hence, to do make predictions, we need to estimate m(x) = E(Y |X = x). The simplest

apprach is to use a parametric model. In particular, the linear regression model assumes

that m(x) is a linear function of x. (More precisely, we seek the best linear predictor.)

Suppose that Xi ∈ Rp so that

Xi = (Xi1, . . . , Xip)
T .

Then the linear regression model is

m(x) = β0 +

p∑

j=1

βjxj.

We can write

Yi = β0 +

p∑

j=1

βjXij + εi, i = 1, . . . , n

where ε1, . . . , εn are iid with mean 0.

If we use the convention that Xi1 = 1 then we can write the model more simply as

Yi =

p∑

j=1

βjXij + εi = βTXi + εi, i = 1, . . . , n (1)

2



where β = (β1, . . . , βp)
T and Xi = (Xi1, . . . , Xip)

T .

Let us define Y = (Y1, . . . , Yn)T , ε = (ε1, . . . , εn)T and let X be the n × p matrix with

X(i, j) = Xij. Then we can write (1) as

Y = Xβ + ε.

The least squares estimator β̂ is the β that minimizes

n∑

i=1

(Yi −XT
i β)2 = ||Y −Xβ||2.

Theorem 2 Suppose that XTX is invertible. Then the least squares estimator is

β̂ = (XTX)−1XTY.

The fitted values or predicted values are Ŷ = (Ŷ1, . . . , Ŷn)T where

Ŷi = XT
i β̂.

Hence,

Ŷ = Xβ̂ = HY

where

H = X(XTX)−1XT

is called the hat matrix.

Theorem 3 The matrix H is symmetric and idempotent: H2 = H. Moreover, HY is the

projection of Y onto the column space of X.

This is discussed in more detail in 36-707 and 10/36-702.

Theorem 4 Suppose that the linear model is correct.1 Also, suppose that Var(εi) = σ2.

Then,
√
n(β̂ − β) N(0, σ2XTX).

1This model is virtually never correct, so view this result with caution.
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Under the (questionable) assumption that the linear model is correct, we can also say

the following. A consistent estimator of σ2 is

σ̂2 =
RSS

n− p

and √
n(β̂j − βj)

sj
 N(0, 1)

where the standard error sj is the jth diagonal element of σ̂2XTX. To test H0 : β̂j = 0

versus H1 : β̂j 6= 0 we reject if |β̂j|/s)j > zα/2. An approximate 1− α confidence interval for

βj is

β̂j ± zα/2sj.

Theorem 5 Suppose that the linear model is correct and that ε1, . . . , εn ∼ N(0, σ2). Then

the least squares estimator is the maximum likelihood estimator.

3 Linear Prediction When the Model is Wrong

When the model is wrong (and it always is) the least squares estimator still has the following

good property. Let β∗ minimize

R(β) = E(Y −XTβ)2.

We call `∗(x) = xTβ∗ the best linear predictor.

Theorem 6 Under weak conditions,

R(β̂)−R(β∗)
P→ 0.

Hence, the least squares estimator approximates the best linear predictor. Let’s prove

this in the case with one covariate. Then

R(β) = E(Y −Xβ)2 = E(Y )2 − 2βE(XY ) + β2E(X2).

4



Minimizing with respect to β we get

β∗ =
E(XY )

E(X2)

assuming that 0 < E(X2) <∞ and E(XY ) <∞. Now

β̂ =

∑
iXiYi∑
iX

2
i

=
1
n

∑
iXiYi

1
n

∑
iX

2
i

.

By the law of large numbers and the continuous mapping theorem:

β̂
P→ β∗.

Since R(β) is a continuous function of β, it follows from the continuous mapping theorem

that

R(β̂)
P→ R(β∗).

In fact,

β̂ =
1
n

∑
iXiYi

1
n

∑
iX

2
i

=
E(XY ) +OP (1/

√
n)

E(X2) +OP (1/
√
n)

= β∗ +OP (1/
√
n)

and

R(β̂) = R(β∗) + (β̂ − β∗)R′(β∗) + o(β̂ − β∗)

and so

R(β̂)−R(β∗) +OP (1/
√
n).

The message here is that least squares estimates the best linear predictor: we don’t have to

assume that the truth is linear.

4 Nonparametric Regression

Suppose we want to estimate m(x) where we only assume that m is a smooth function. The

kernel regression estimator is

m̂(x) =
∑

i

Yiwi(x)

5
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Figure 1: A kernel regression estimator.

where

wi(x) =
K
(
||x−Xi||

h

)

∑
jK

(
||x−Xj ||

h

) .

Here K is a kernel and h is a bandwidth. The properties are simialr to that of kernel density

estimation. The properties of m̂ are discussed in more detail in the 36-707 and in 10-702.

An example is shown in Figure 1.
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5 Classification

The best classifier is the so-called Bayes classifier defined by:

hB(x) = I(m(x) ≥ 1/2)

where m(x) = E(Y |X = x).

Theorem 7 For any h, R(h) ≥ R(hB).

Proof. For any h,

R(h)−R(hB) = P(Y 6= h(X))− P(Y 6= hB(X))

=

∫
P(Y 6= h(x)|X = x)p(x)dx−

∫
P(Y 6= hB(x)|X = x)p(x)dx

=

∫
(P(Y 6= h(x)|X = x)− P(Y 6= hB(x)|X = x)) p(x)dx.

We will show that

P(Y 6= h(x)|X = x)− P(Y 6= hB(x)|X = x) ≥ 0

for all x. Now

P(Y 6= h(x)|X = x) − P(Y 6= hB(x)|X = x)

=

(
h(x)P(Y 6= 1|X = x) + (1− h(x))P(Y 6= 0|X = x)

)

−
(
hB(x)P(Y 6= 1|X = x) + (1− hB(x))P(Y 6= 0|X = x)

)

= (h(x)(1−m(x)) + (1− h(x))m(x))

− (hB(x)(1−m(x)) + (1− hB(x))m(x))

= 2(m(x)− 1/2)(hB(x)− h(x)) ≥ 0

since hB(x) = 1 if and only if m(x) ≥ 1/2. � �

7



The most direct approach to classification is empirical risk minimization (ERM). We

start with a set of classifiers H. Each h ∈ H is a function h : x→ {0, 1}. The training error

or empirical risk is

R̂(h) =
1

n

n∑

i=1

I(Yi 6= h(Xi)).

We choose ĥ to minimize R̂:

ĥ = argminh∈HR̂(h).

For example, a linear classifier has the form hβ(x) = I(βTx ≥ 0). The set of linear

classifiers is H = {hβ : β ∈ Rp}.

Theorem 8 Suppose that H has VC dimension d < ∞. Let ĥ be the empirical risk mini-

mizer and let

h∗ = argminh∈HR(h)

be the best classifier in H. Then, for any ε > 0,

P(R(ĥ) > R(h∗) + 2ε) ≤ c2n
de−nc2ε

2

for some constnts c1 and c2.

Proof. Recall that

P(sup
h∈H
|R̂(h)−R(h)| > ε) ≤ c2n

de−nc2ε
2

.

But when suph∈H |R̂(h)−R(h)| ≤ ε we have

R(ĥ) ≤ R̂(ĥ) + ε ≤ R̂(h∗) + ε ≤ R(h∗) + 2ε. �

�
Empirical risk minimization is difficult because R̂(h) is not a smooth function. Thus,

we often use other approaches. One idea is to use a surrogate loss function. To expain this

idea, it will be convenient to relabel the Yi’s as being +1 or -1. Many classifiers then take

the form

h(x) = sign(f(x))

8



for some f(x). For example, linear classifiers have f(x) = xTβ. Th classification loss is then

L(Y, f,X) = I(Y f(X) < 0)

since an error occurs if and only if Y and f(X) have different signs. An example of surrogate

loss is the hinge function

(1− Y f(X))+.

Instead of minimizing classification loss, we minimize

∑

i

(1− Yif(Xi))+.

The resulting classifier is called a support vector machine.

Another approach to classification is plug-in clasification. We replace the Bayes rule

hB = I(m(x) ≥ 1/2) with

ĥ(x) = I(m̂(x) ≥ 1/2)

where m̂ is an estimate of the regression function. The estimate m̂ can be parametric or

nonparametric.

A common parametric estimator is logistic regression. Here, we assume that

m(x; β) =
ex

T β

1 + exT β
.

Since Yi is Bernoulli, the likeihood is

L(β) =
n∏

i=1

m(Xi; β)Yi(1−m(Xi; β))1−Yi .

We compute the mle β̂ numerically. See Section 12.3 of the text.

What is the relationship between classification and regression? Generally speaking, clas-

sification is easier. This follows from the next result.

Theorem 9 Let m(x) = E(Y |X = x) and let hm(x) = I(m(x) ≥ 1/2) be the Bayes rule.

Let g be any function and let hg(x) = I(g(x) ≥ 1/2). Then

R(hg)−R(hm) ≤ 2

√∫
|g(x)−m(x)|2dP (x).

9



Proof. We showed earlier that

R(hg)−R(hm) =

∫
[P(Y 6= hg(x)|X = x)− P(Y 6= hm(x)|X = x)] dP (x)

and that

P(Y 6= hg(x)|X = x)− P(Y 6= hm(x)|X = x) = 2(m(x)− 1/2)(hm(x)− hg(x)).

Now

2(m(x)− 1/2)(hm(x)− hg(x)) = 2|m(x)− 1/2| I(hm(x) 6= hg(x)) ≤ 2|m(x)− g(x)|

since hm(x) 6= hg(x) implies that |m(x)− 1/2| ≤ |m(x)− g(x)|. Hence,

R(hg)−R(hm) = 2

∫
|m(x)− 1/2|I(hm(x) 6= hg(x))dP (x)

≤ 2

∫
|m(x)− g(x)|dP (x)

≤ 2

√∫
|g(x)−m(x)|2dP (x)

where the last setp follows from the Cauchy-Schwartz inequality. � �

Hence, if we have an estimator m̂ such that
∫
|m̂(x) − m(x)|2dP (x) is small, then the

excess classification risk is also small. But the reverse is not true.

10



Lecture Notes 16

Model Selection

Not in the text.

1 Introduction

Sometimes we have a set of possible models and we want to choose the best model. Model

selection methods help us choose a good model. Here are some examples.

Example 1 Suppose you use a polynomial to model the regression function:

m(x) = E(Y |X = x) = β0 + β1x+ · · ·+ βpx
p.

You will need to choose the order of polynomial p. We can think of this as a sequence of

modelsM1, . . . ,Mp, . . . indexed by p.

Example 2 Suppose you have data Y1, . . . , Yn on age at death for n people. You want to

model the distribution of Y . Some popular models are:

1. M1: the exponential distribution: f(y; θ) = θe−θy.

2. M2: the gamma distribution: f(y; a, b) = (ba/Γ(a))ya−1e−by.

3. M3: the log-normal distribution: we take log Y ∼ N(µ, σ2).

Example 3 Suppose you have time series data Y1, Y2, . . .. A common model is the AR

(autoregressive model):

Yt = a1Yt−1 + a2Yt−2 + · · ·+ akYt−k + εt

where εt ∼ N(0, σ2). The number k is called the order of the model. We need to choose k.

1



Example 4 In a linear regression model, you need to choose which variables to include in

the regression. This is called variable selection. This problem is discussed at length in 36-707

and 10-702.

The most common model selections methods are:

1. AIC (and related methods like Cp).

2. Cross-validation.

3. BIC (and related methods like MDL, Bayesian model selection).

We need to distinguish between 2 goals:

1. Find the model that gives the best prediction (without assuming that any of the models

are correct).

2. Assume one of the models is the true model and find the “true” model.

Generally speaking, AIC and cross-validation are used for goal 1 while BIC is used for

goal 2.

2 AIC

Suppose we have models M1, . . . ,Mk where each model is a set of densities:

Mj =

{
p(y; θj) : θj ∈ Θj

}
.

We have data Y1, . . . , Yn drawn from some density f . We do not assume that f is in

any of the models.

2



Let θ̂j be the mle from model j. An estimate of f , based on model j is f̂j(y) = p(y; θ̂j).

The quality of f̂j(y) as an estimate of f can be measured by the Kullback-Leibler distance:

K(f, f̂j) =

∫
p(y) log

(
p(y)

f̂j(y)

)
dy

=

∫
p(y) log p(y)dy −

∫
p(y) log f̂j(y)dy.

The first term does not depend on j. So minimizing K(f, f̂j) over j is the same as maximizing

Kj =

∫
p(y) log p(y; θ̂j)dy.

We need to estimate Kj. Intuitively, you might think that a good estimate of Kj is

Kj =
1

n

n∑

i=1

log p(Yi; θ̂j) =
`j(θ̂j)

n

where `j(θj) is the log-likelihood funcion for model j. However, this estimate is very biased

because the data are being used twice: first to get the mle and second to estimate the

integral. Akaike showed that the bias is approximately dj/n where dj = dimension(Θj).

Therefore we use

K̂j =
`j(θ̂j)

n
− dj
n

= Kj −
dj
n
.

Now, define

AIC(j) = 2nK̂j = `j(θ̂j)− 2dj.

Notice that maximizing K̂j is the same as maximizing AIC(j) over j. Why do we multiply

by 2n? Just for historical reasons. We can multiply by any constant; it won’t change which

model we pick. In fact, different texts use different versions of AIC.

AIC stands for “Akaike Informaion Criterion.” Akaike was a famous Japanese statistician

who died recently (August 2009).

3 Theoretical Derivation of AIC

Let us now look closer to see where the formulas come from. Recall that

Kj =

∫
p(y) log p(y; θ̂j)dy.

3



For simplicity, let us focus on one model and drop the subscript j. We want to estimate

K =

∫
p(y) log p(y; θ̂)dy.

Our goal is to show that

K − d

n
≈ K

where

K =
1

n

n∑

i=1

log p(Yi; θ̂)

and d is the dimension of θ.

Some Notation and Background. Let θ0 minimize K(f, p(·; θ)). So p(y; θ0) is the

closest density in the model to the true density. Let `(y, θ) = log p(y; θ) and

s(y, θ) =
∂ log p(y; θ)

∂θ

be the score and let H(y, θ) be the matrix of second derivatives.

Let Zn =
√
n(θ̂ − θ0) and recall that

Zn  N(0, J−1V J−1)

where J = −E[H(Y, θ0)] and

V = Var(s(Y, θ0)).

In class we proved that V = J−1. But that proof assumed the model was correct. We are

not assuming that. Let

Sn =
1

n

n∑

i=1

s(Yi, θ0).

By the CLT,
√
nSn  N(0, V )

Hence, in distribution

JZn ≈
√
nSn. (1)
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Here we used the fact that Var(AX) = A(VarX)AT . Thus

Var(JZn) = J(J−1V J−1)JT = V.

We will need one other fact. Let ε be a random vector with mean µ and covariance Σ.

Let

Q = εTAε.

(Q is a called a quadratic form.) Then

E(Q) = trace(AΣ) + µTAµ.

The details. By using a Taylor series

K ≈
∫
p(y)

(
log p(y; θ̂0) + (θ − θ0)T s(y, θ0) +

1

2
(θ̂ − θ0)TH(y, θ0)(θ̂ − θ0)

)
dy

= K0 −
1

2n
ZT
n JZn

where

K0 =

∫
p(y) log p(y; θ0)dy,

The second term dropped out because, like the score function, it has mean 0. Again we do

a Taylor series to get

K ≈ 1

n

n∑

i=1

(
`(Yi, θ0) + (θ̂ − θ0)T s(Yi, θ0) +

1

2
(θ̂ − θ0)TH(Yi, θ0)(θ̂ − θ0)

)

= K0 + An + (θ̂ − θ0)TSn −
1

2n
ZT
n JnZn

≈ K0 + An +
ZT
n Sn√
n
− 1

2n
ZT
n JZn

where

Jn = − 1

n

n∑

i=1

H(Yi, θ0)− P→ J,

5



and

An =
1

n

n∑

i=1

(`(Yi, θ0)−K0).

Hence,

K −K ≈ An +

√
nZT

n Sn
n

≈ An +
ZT
n JZn
n

where we used (1). We conclude that

E(K −K) ≈ E(An) + E
(
ZT
n JZn
n

)
= 0 +

trace(J J−1V J−1)

n
=

trace(J−1V )

n
.

Hence,

K ≈ K − trace(J−1V )

n
.

If the model is correct, then J−1 = V so that trace(J−1V ) = trace(I) = p. Thus we would

use

K ≈ K − p

n
.

You can see that there are a lot of approximations and assumptions being used. So AIC

is a very crude tool. Cross-validation is much more reliable.

4 Cross-Validation

There are various flavors of cross-validation. In general, the data are split into a training set

and a test set. The models are fit on the training set and are used to predict the test set.

Usually, many such splits are used and the result are averaged over splits. However, to keep

things simple, we will use a single split.

Suppose again that we have models M1, . . . ,Mk. Assume there are 2n data points.

Split the data randomly into two halves that we will denote D = (Y1, . . . , Yn) and T =

(Y ∗
1 , . . . , Y

∗
n ). Use D to find the mle’s θ̂j. Then define

K̂j =
1

n

n∑

i=1

log p(Y ∗
i ; θ̂j).

6



Note that E(K̂j) = Kj; there is no bias because θ̂j is independent of Y ∗
j . We will assume

that | log p(y; θ)| ≤ B <∞. By Hoeffding’s inequality,

P(max
j
|K̂j −Kj| > ε) ≤ 2ke−2nε2/(2B2).

Let

εn =

√
2B2 log(2k/α)

n
.

Then

P(max
j
|K̂j −Kj| > εn) ≤ α.

If we choose ĵ = argmaxjK̂j, then, with probability at least 1− α,

Kbj ≥ max
j
Kj − 2

√
2B2 log(2k/α)

n
= max

j
Kj −O

(
log k

n

)
.

So with high probability, you choose close to the best model. This argument can be improved

and also applies to regression, classification etc. Of course, with regression, the loss function

is E(Y −m(X))2 and the cross-validation score is then

1

n

n∑

i=1

(Y ∗
i −m(X∗

i ))2.

For classification we use
1

n

n∑

i=1

I(Y ∗
i 6= h(X∗

i )).

We have made essentially no assumptions or approximations. (The bounded on log f can

be relaxed.) The beauty of cross-validation is its simpicity and generality. It can be shown

that AIC and cross-validation have very similar behavior. But, cross-validation works under

weaker conditions.

5 BIC

BIC stands for Bayesian Information Criterion. It is also known as the Schwarz Criterion

after Gideon Schwarz. It is virtually identical to the MDL (minimum description length)

criterion.
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We choose j to maximize

BICj = `j(θ̂j)−
dj
2

log n.

This is the same as AIC but the penalty is harsher. Thus, BIC tends to choose simpler

models. Here is the derivation.

We put a prior πj(θj) on the parameter θj. We also put a prior probability pj that model

Mj is the true model. By Bayes theorem

P (Mj|Y1, . . . , Yn) ∝ p(Y1, . . . , Yn|Mj)pj.

Furthermore,

p(Y1, . . . , Yn|Mj) =

∫
p(Y1, . . . , Yn|Mj, θj)πj(θj)dθj =

∫
L(θj)πj(θj)dθj.

We know choose j to maximize P (Mj|Y1, . . . , Yn). Equivalently, we choose j to maximize

log

∫
L(θj)πj(θj)dθj + log pj.

Some Taylor series approximations show that

log

∫
L(θj)πj(θj)dθj + log pj ≈ `j(θ̂j)−

dj
2

log n = BICj.

What happened to the prior? It can be shown that the terms involving the prior are lower

order than the term that appear in formula for BICj so they have been dropped.

BIC behaves quite differently than AIC or cross-validation. It is also based on different

assumptions. BIC assumes that one of the models is true and that you are trying to find

the model most likely to be true in the Bayesian sense. AIC and cross-validation are trying

to find the model that predict the best.

6 Model Averaging

Bayesian Approach. Suppose we want to predict a new observation Y . Let D =

{Y1, . . . , Yn} be the observed data. Then

p(y|D) =
∑

j

p(y|D,Mj)P(Mj|D)

8



where

P(Mj|D) =

∫
L(θj)πj(θj)dθj∑

s

∫
L(θs)πs(θs)dθs

≈ eBICj

∑
s e

BICs
.

Frequentist Approach. There is a large and growing literaure on frequenist model

averaging. It is discussed in 10-702.

7 Simple Normal Example

Let

Y1, . . . , Yn ∼ N(µ, 1).

We want to compare two models:

M0 : N(0, 1), and M1 : N(µ, 1).

Hypothesis Testing. We test

H0 : µ = 0 versus µ 6= 0.

The test statistic is

Z =
Y − 0√
Var(Y )

=
√
n Y .

We reject H0 if |Z| > zα/2. For α = 0.05, we reject H0 if |Z| > 2, i.e., if

|Y | > 2√
n
.

AIC. The likelihood is proportional to

L(µ) =
n∏

i=1

e−(Yi−µ)2/2 = e−n(Y−µ)2/2e−nS
2/2

where S2 =
∑

i(Yi − Y )2. Hence,

`(µ) = −n(Y − µ)2

2
− nS2

2
.

9



Recall that AIC = `S − |S|. The AIC scores are

AIC0 = `(0)− 0 = −nY
2

2
− nS2

2

and

AIC1 = `(µ̂)− 1 = −nS
2

2
− 1

since µ̂ = Y . We choose model 1 if

AIC1 > AIC0

that is, if

−nS
2

2
− 1 > −nY

2

2
− nS2

2

or

|Y | >
√

2√
n
.

Similar to but not the same as the hypothesis test.

BIC. The BIC scores are

BIC0 = `(0)− 0

2
log n = −nY

2

2
− nS2

2

and

BIC1 = `(µ̂)− 1

2
log n = −nS

2

2
− 1

2
log n.

We choose model 1 if

BIC1 > BIC0

that is, if

|Y | >
√

log n

n
.

Hypothesis testing controls type I errors

AIC/CV/Cp finds the most predictive model

BIC finds the true model (with high probability)

10



Lecture Notes 17

1 Multiple Testing and Confidence Intervals

Suppose we need to test many null hypotheses

H0,1, . . . , H0,N

where N could be very large. We cannot simply test each hypotheses at level α because, if

N is large, we are sure to make lots of type I errors just by chance. We need to do some sort

of multiplicity adjustment.

Familywise Error Control. Suppose we get a p-value pj for each null hypothesis. Let

I = {i : H0,i is true}. If we reject H0,i for any i ∈ I then we have made an error. Let

R = {j : we reject H0j} be the set of hypotheses we reject. We say that we have controlled

the familywise error rate at level α if

P(R ∩ I 6= ∅) ≤ α.

The easiest way to control the familywise error rate is the Bonferroni method. The idea

is to reject H0,i if and only if pi < α/N . Then

P(making a false rejection) = P
(
pi <

α

N
for some i ∈ I

)

≤
∑

i∈I
P
(
pi <

α

N

)

=
∑

i∈I

α

N
since pi ∼ Unif(0, 1) for i ∈ I

=
α |I|
N
≤ α.

So we have overall control of the type I error. However, it can have low power.

The Normal Case. Suppose that we have N sample means Y1, . . . , YN each based on n

Normal observations with variance 1. So Yj ∼ N(µj, 1/n). To test H0,j : µj = 0 we can use
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the test statistic Tj =
√
nYj. The p-value is

pj = 2Φ(−|Tj|).

If we did uncorrected testing we rject when pj < α, which means, |Tj| > zα/2. A useful

approximation is:

zα ≈
√

2 log(1/α).

So we reject when

|Tj| >
√

2 log(2/α).

Under the Bonferroni correction we reject when pj < α/N which coresponds to

|Tj| >
√

2 log(2N/α).

Hence, the familywise rejection threshold grows like
√

logN .

False Discovery Control. The Bonferroni adjustment is very strict. A weaker type of

control is based on the false discovery rate.1 Suppose we reject a set of hyptheses R. Define

the false discovery proportion

FDP =
|R ∩ I|
|R|

where the ratio is defined to be 0 in case both the numerator and denominator are 0. Our

goal is to find a method for choosing R such that

FDR = E(FDP) ≤ α.

The Benjamini-Hochberg method works as follows:

1. Find the ordered p-values P(1) < · · · < P(N).

2. Let j = max{i : P(i) < iα/N}. Let T = P(j).

3. Let R = {i : Pi ≤ T}.
1Reference: Benjamini and Hochberg (1995).
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Let us see why this controls the FDR. Consider, in general, rejecting all hypothesis for

which Pi < t. Let Wi = 1 if H0,i is true and Wi = 0 otherwise. Let Ĝ be the empirical

distribution of the p-values and let G(t) = E(Ĝ(t)). In this case,

FDP =

∑N
i=1WiI(Pi < t)∑N
i=1 I(Pi < t)

=
1
N

∑N
i=1WiI(Pi < t)

1
N

∑N
i=1 I(Pi < t)

.

Hence,

E(FDP) ≈ E( 1
N

∑N
i=1WiI(Pi < t))

1
N
E(
∑N

i=1 I(Pi < t))

=
1
N

∑N
i=1WiE(I(Pi < t))

1
N

∑N
i=1 E(I(Pi < t))

=
t|I|
G(t)

≤ t

G(t)
≈ t

Ĝ(t)
.

Let t = P(i) for some i; then Ĝ(t) = i/N . Thus, FDR ≤ P(i)N/i. Setting this equal to α we

get P(i) < iα/N is the Benjamini-Hochberg rule.

FDR control typically has higher power than familywise control. But they are controlling

different things. You have to decide, based on the context, which is appropriate.

Example 1 Figure 1 shows an example where Yj ∼ N(µj, 1) for j = 1, . . . , 1, 000. In this

example, µj = 3 for 1 ≤ j ≤ 50 and µj = 0 for j > 50. The figure shows the test statistics,

the p-values, the sorted log p-values with the Bonferroni threshold and the sorted log p-values

with the FDR threshold (using α = 0.05). Bonferroni rejects 7 hypotheses while FDR rejects

22.

Multiple Confidence Intervals. A similar problem occurs with confidence intervals.

If we construct a confidence interval C for one parameter θ then P(θ ∈ C) ≥ 1 − α. But if

we construct confidence intervals C1, . . . , CN for N parameters θ1, . . . , θN then we want to

ensure that

P(θj ∈ Cj, for all j = 1, . . . , N) ≥ 1− α.

To do this, we construct each confidence interval Cj at level 1− α/N . Then

P(θj /∈ Cj for some j) ≤
∑

j

P(θj /∈ Cj) ≤
∑

j

α

N
= α.

3
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Figure 1: Top left: 1,000 test statistics. Top right: the p-values. Bottom left: sorted log

p-values and Bonferroni threshold. Bottom right: sorted log p-values and FDR threshold.
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2 Causation

Most of statistics and machine learning is concerned with prediction. A typical question is:

what is a good prediction of Y given that I observe that X = x? Causation is concerned

with questions of the form: what is a good prediction of Y given that I set X = x? The

difference between passively observing X = x and actively intervening and setting X = x is

significant and requires different techniques and, typically, much strnger assumptions.

Consider this story. A mother notices that tall kids have a higher reading level than

short kids. (This is because the tall kids are older.) The mother puts her small child on a

device and stretches the child until he is tall. She is dismayed to find out that his reading

level has not changed.

Te mother is correct that height and reading skill are associated. Put another way, you

can use height to predict reading skill. But that does not imply that height causes reading

skill. This is what statisticians mean when they say:

correlation is not causation.

On the other hand, consider smoking and lung cancer. We know that smoking and lung

cancer are associated. But we also believe that smoking causes lung cancer. In this case,

we recognize that intervening and forcing someone to smoke does change his probability of

getting lung cancer.

The difference between prediction (association/correlation) and causation is this: in pre-

diction we are interested in

P(Y ∈ A|X = x)

which means: the probability that Y ∈ A given that we observe that X is equal to x. For

causation we are interested in

P(Y ∈ A|set X = x)

which means: the probability that Y ∈ A given that we set X equal to x. Prediction is

about passive observation. Causation is about active intervention. Most of statistics and
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machine learning concerns prediction. But sometimes causation is the primary focus. The

phrase correlation is not causation can be written mathematically as

P(Y ∈ A|X = x) 6= P(Y ∈ A|set X = x).

Despite the fact that causation and association are different, people mix them up all the

time, even people trained in statistics and machine learning. On TV recently there was a

report that good health is associated with getting seven hours of sleep. So far so good. Then

the reporter goes on to say that, therefore, everyone should strive to sleep exactly seven

hours so they will be healthy. Wrong. That’s confusing causation and association. Another

TV report pointed out a correlation between people who brush their teeth regularly and low

rates of heart disease. An interesting correlation. Then the reporter (a doctor in this case)

went on to urge people to brush their teeth to save their hearts. Wrong!

To avoid this confusion we need a way to discuss causation mathematically. That is, we

need someway to make P(Y ∈ A|set X = x) formal. There are two common ways to do this.

One is to use counterfactuals. The other is to use causal graphs. These approaches are

equivalent. There are two different languages for saying the same thing.

Causal inference is tricky and should be used with great caution. The main messages

are:

1. Causal effects can be estimated consistently from randomized experiments.

2. It is difficult to estimate causal effects from observational (non-randomized) experiements.

3. All causal conclusions from observational studes should be regarded as very tentative.

Causal inference is a vast topic. We will only touch on the main ideas here.

Counterfactuals. Consider two variables Y and X. Suppose that X is a binary variable

that represents some treatment. For example, X = 1 means the subject was treated and

X = 0 means the subject was given placebo. The response variable Y is real-valued.

We can address the problem of predicting Y from X by estimating E(Y |X = x). To

address causal questions, we introduce counterfactuals. Let Y1 denote the response we observe

if the subject is treated, i.e. if we set X = 1. Let Y0 denote the response we observe if the

6



subject is not treated, i.e. if we set X = 0. If we treat a subject, we observe Y1 but we

do not observe Y0. Indeed, Y0 is the value we would have observed if the subject had been

treated. The unobserved variable is called a counterfactual.

We have enlarged our set of variables from (X, Y ) to (X, Y, Y0, Y1). Note that

Y = XY1 + (1−X)Y0. (1)

A small dataset might look like this:

X Y Y0 Y1

1 1 * 1

1 1 * 1

1 0 * 0

1 1 * 1

0 1 1 *

0 0 0 *

0 1 1 *

0 1 1 *

The asterisks indicate unobserved variables. To answer causal questions, we are interested

in the distribution p(y0, y1). We can interpret p(y1) as p(y|set X = 1) and we can interpret

p(y0) as p(y|set X = 0). In particular, we might want to estimate the mean treatment effect

or mean causal effect

θ = E(Y1)− E(Y0) = E(Y |set X = 1)− E(Y |set X = 0).

The parameter θ has the following intepretation: θ is the mean response if we forced everyone

to take the treatment minus mean response if we forced everyone not to take the treatment.

Suppose now that we observe a sample (X1, Y1), . . . , (Xn, Yn). Can we estmate θ? No. In

general, there is no consistnt estimator of θ. We can estimate α = E(Y |X = 1)−E(Y |X = 0)

but α is not equal to θ.
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However, suppose that we did a randomized experiment where we randomly assigned

each person to treatment of placebo by the flip of a coin. In this case, X will be independent

of (Y0, Y1). In symbols:

random treatment assignment implies : (Y0, Y1)qX.

Hence, in this case,

α = E(Y |X = 1)− E(Y |X = 0)

= E(Y1|X = 1)− E(Y0|X = 0) since Y = XY1 + (1−X)Y0

= E(Y1)− E(Y0) = θ since (Y0, Y1)qX.

Hence, random assignment makes θ equal to α and α can be consistently estimated. If X is

randomly assigned then correlation = causation. This is why people spend millions

of dollars doing randomized experiements.

In some cases it is not feasible to do a randomized experiment. Smoking and lung cancer

is an example. Can we estimate causal parameters from observational (non-randomized)

studies? The answer is: sort of.

In an observational stsudy, the treated and untreated groups will not be comparable.

Maybe the healthy people chose to take the treatment and the unhealthy people didn’t. In

other words, X is not independent of (Y0, Y1). The treatment may have no effect but we

would still see a strong association between Y and X. In other words, α might be large even

though θ = 0.

To account for the differences in the groups, we might measure confounding variables.

These are the variables that affect both X and Y . By definition, there are no such variables in

a randomized experiment. The hope is that if we measure enough confounding variables Z =

(Z1, . . . , Zk), then, perhaps the treated and untreated groups will be comparable, conditional

on Z. Formally, we hope that X is indpendent of (Y0, Y1) conditional on Z. If this is true,

8



we can estimate θ since

θ = E(Y1)− E(Y0)

=

∫
E(Y1|Z = z)p(z)dz −

∫
E(Y0|Z = z)p(z)dz

=

∫
E(Y1|X = 1, Z = z)p(z)dz −

∫
E(Y0|X = 0, Z = z)p(z)dz

=

∫
E(Y |X = 1, Z = z)p(z)dz −

∫
E(Y |X = 0, Z = z)p(z)dz (2)

where we used the fact that X is indpendent of (Y0, Y1) conditional on Z in the third line and

the fact that Y = (1−X)Y1 +XY0 in the fourth line. The latter quantity can be estimated

by

θ̂ =
1

n

n∑

i=1

m̂(1, Zi)−
1

n

n∑

i=1

m̂(0, Zi)

where m̂(x, z) is an estimate of the regression function m(x, z) = E(Y |X = x, Z = z). This

is known as adjusting for confounders and θ̂ is called the adjusted treatment effect.

It is instructive to compare the casual effect

θ = E(Y1)− E(Y0)

=

∫
E(Y |X = 1, Z = z)p(z)dz −

∫
E(Y |X = 0, Z = z)p(z)dz

with the predictive quantity

α = E(Y |X = 1)− E(Y |X = 0)

=

∫
E(Y |X = 1, Z = z)p(z|X = 1)dz −

∫
E(Y |X = 0, Z = z)p(z|X = 0)dz

which are mathematically (and conceptually) quite different.

We need to treat θ̂ cautiously. It is very unlikely that we have successfully measured all

the relevant confounding variables so θ̂ should be regarded as a crude approximation to θ at

best.

Causal Graphs. Another way to capture the difference between P (Y ∈ A|X = x) and

P (Y ∈ A|set X = x) is to represent the distribution using a directed graph and then we

capture the second statement by performing certain operations on the graph.

9



A Directed Acyclic Graph (DAG) is a graph for a set of variables with no cycles. The

graph defines a set of distributions of the form

p(y1, . . . , yk) =
∏

p(yj|parents(yj)

where parents(yj) are the parents of yj. A causal graph is a DAG with extra information.

A DAG is a causal graph if it correctly encodes the effect of setting a variable to a fixed

value.

Consider the graph G in Figure (2). Here, X denotes treatment, Y is response and Z is

a confounding variable. To find the causal distribution p(y|set X = x) we do the following

steps:

1. Form a new graph G∗ by removing all arrow into X. Now set X equal to x. This

corresponds to replacing the joint distribution p(x, y, z) = p(z)p(x|z)p(y|x, z) with the

new distribution p∗(y, z) = p(z)p(y|x, z). The factor p(x|z) is removed because we

know regard x as a fixed number.

2. Compute the distribution of y from the new distribution:

p(y|set X = x) ≡ p∗(y) =

∫
p∗(y, z)dz =

∫
p(z)p(y|x, z)dz.

Now we have that

θ = p(y|set X = 1)− p(y|set X = 0) =

∫
p(z)p(y|1, z)dz −

∫
p(z)p(y|0, z)dz

This is precisely the same equation as (2). Both approaches lead to the same thing. If there

were unobserved confounding variables, then the formula for θ would involve these variables

and the causal effect would be non-estimable (as before).

In a randomized experiment, there would be no arrow from Z to X. (That’s the point of

randomization). In that case the above calculations shows that θ = E(Y |X = 1)−E(Y |X =

0) just as we saw with the counterfactual approach.

To understand the difference between p(y|x) and p(y|setx) more clearly, it is help-

ful to consider two different computer programs. Consider the DAG in Figure 2. The

10



Z X Y

Figure 2: Conditioning versus intervening.

probability function for a distribution consistent with this DAG has the form p(x, y, z) =

p(x)p(y|x)p(z|x, y). The following is pseudocode for generating from this distribution.

For i = 1, . . . , n :

xi <− pX(xi)

yi <− pY |X(yi|xi)

zi <− pZ|X,Y (zi|xi, yi)

Suppose we run this code, yielding data (x1, y1, z1), . . . , (xn, yn, zn). Among all the times

that we observe Y = y, how often is Z = z? The answer to this question is given by the

conditional distribution of Z|Y . Specifically,

P(Z = z|Y = y) =
P(Y = y, Z = z)

P(Y = y)
=
p(y, z)

p(y)

=

∑
x p(x, y, z)

p(y)
=

∑
x p(x) p(y|x) p(z|x, y)

p(y)

=
∑

x

p(z|x, y)
p(y|x) p(x)

p(y)
=
∑

x

p(z|x, y)
p(x, y)

p(y)

=
∑

x

p(z|x, y) p(x|y).

Now suppose we intervene by changing the computer code. Specifically, suppose we fix Y

at the value y. The code now looks like this:

11



set Y = y

for i = 1, . . . , n

xi <− pX(xi)

zi <− pZ|X,Y (zi|xi, y)

Having set Y = y, how often was Z = z? To answer, note that the intervention has

changed the joint probability to be

p∗(x, z) = p(x)p(z|x, y).

The answer to our question is given by the marginal distribution

p∗(z) =
∑

x

p∗(x, z) =
∑

x

p(x)p(z|x, y).

This is p(z|set Y = y).

Example 2 You may have noticed a correlation between rain and having a wet lawn, that is,

the variable “Rain” is not independent of the variable “Wet Lawn” and hence pR,W (r, w) 6=
pR(r)pW (w) where R denotes Rain and W denotes Wet Lawn. Consider the following two

DAGs:

Rain −→Wet Lawn Rain←−Wet Lawn.

The first DAG implies that p(w, r) = p(r)p(w|r) while the second implies that p(w, r) =

p(w)p(r|w) No matter what the joint distribution p(w, r) is, both graphs are correct. Both

imply that R and W are not independent. But, intuitively, if we want a graph to indicate

causation, the first graph is right and the second is wrong. Throwing water on your lawn

doesn’t cause rain. The reason we feel the first is correct while the second is wrong is because

the interventions implied by the first graph are correct.

Look at the first graph and form the intervention W = 1 where 1 denotes “wet lawn.”

Following the rules of intervention, we break the arrows into W to get the modified graph:

Rain set Wet Lawn =1

12



with distribution p∗(r) = p(r). Thus P(R = r | W := w) = P(R = r) tells us that “wet lawn”

does not cause rain.

Suppose we (wrongly) assume that the second graph is the correct causal graph and form

the intervention W = 1 on the second graph. There are no arrows into W that need to be

broken so the intervention graph is the same as the original graph. Thus p∗(r) = p(r|w)

which would imply that changing “wet” changes “rain.” Clearly, this is nonsense.

Both are correct probability graphs but only the first is correct causally. We know the

correct causal graph by using background knowledge.

Learning Casual Structure? We could try to learn the correct causal graph from

data but this is dangerous. In fact it is impossible with two variables. With more than two

variables there are methods that can find the causal graph under certain assumptions but

they are large sample methods and, furthermore, there is no way to ever know if the sample

size you have is large enough to make the methods reliable.

Randomization Again. We can use DAGs to represent confounding variables. If X

is a treatment and Y is an outcome, a confounding variable Z is a variable with arrows into

both X and Y ; see Figure 3. It is easy to check, using the formalism of interventions, that

the following facts are true:

In a randomized study, the arrow between Z and X is broken. In this case, even with

Z unobserved (represented by enclosing Z in a circle), the causal relationship between X

and Y is estimable because it can be shown that E(Y |X := x) = E(Y |X = x) which does

not involve the unobserved Z. In an observational study, with all confounders observed,

we get E(Y |X := x) =
∫
E(Y |X = x, Z = z)p(z) which is just the adjusted treatment

effect. If Z is unobserved then we cannot estimate the causal effect because E(Y |X := x) =
∫
E(Y |X = x, Z = z)dFZ(z) involves the unobserved Z. We can’t just use X and Y since

in this case. P(Y = y|X = x) 6= P(Y = y|X := x) which is just another way of saying that

causation is not association.

13
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Figure 3: Randomized study; Observational study with measured confounders; Observational

study with unmeasured confounders. The circled variables are unobserved.

3 Individual Sequence Prediction

The goal is to predict yt from y1, . . . , yt−1 with no assumptions on the sequence. 2 The data

are not assumed to be iid; they are not even assumed to be random. This is a version of

online learning. For simplicity assume that yt ∈ {0, 1}.
Suppose we have a set of prediction algorithms (or experts):

F = {F1, . . . , FN}

Let Fj,t is the prediction of algorithm j at time t based on yt−1 = (y1, . . . , yt−1). At time t:

1. You see yt−1 and (F1,t, . . . , FN,t).

2. You predict Pt.

3. yt is revealed.

4. You suffer loss `(Pt, yt).

We will focus on the loss `(pt, yt) = |pt − yt| but the theory works well for any convex

loss. The cumulative loss is

Lj(y
n) =

1

n

n∑

i=1

|Fj,t − yt| ≡
1

n
Sj(y

n)

where Sj(y
n) =

∑n
i=1 |Fj,t − yt|. The maximum regret is

Rn = max
yt∈{0,1}t

(
LP (yn)−min

j
Lj(y

n)

)

2Reference: Prediction, Learning, and Games. Nicolò Cesa-Bianchi and Gábor Lugosi, 2006.
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and the minimax regret is

Vn = inf
P

max
yt∈{0,1}t

(
LP (yn)−min

j
Lj(y

n)

)
.

Let Pt(y
t−1) =

∑N
j=1wj,t−1 Fj,t where

wj,t−1 =
exp {−γSj,t−1}

Zt

and Zt =
∑N

j=1 exp {−γSj,t−1} . The wj’s are called exponential weights.

Theorem 3 Let γ =
√

8 logN/n. Then

LP (yn)− min
1≤j≤N

Lj(y
n) ≤

√
logN

2n
.

Proof. The idea is to place upper and lower bounds on log
(
Zn+1

Z1

)
then solve for LP (yn).

Upper bound: We have

log

(
Zn+1

Z1

)
= log

(
N∑

j=1

exp {−γnLj,n}
)
− logN

≥ log

(
max
j

exp {−γnLj,n}
)
− logN

= −γnmin
j
Lj,n − logN. (3)

Lower bound: Note that

log

(
Zt+1

Zt

)
= log

(∑N
j=1wj,t−1 e

−γ|Fj,t−yt|
∑N

j=1wj,t−1

)

= logE
(
e−γ|Fj,t−yt|) .

This is a formal expectation with respect to the distribution over j probability proportional

to e−γ|Fj,t−yt|).

Recall Hoeffding’s bound for mgf: if a ≤ X ≤ b

logE(esX) ≤ sE(X) +
s2(b− a)2

8
.
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So:

logE
(
e−γ|Fj,t−yt|) ≤ −γE|Fj,t − yt|+

γ2

8

= −γ|EFj,t − yt|+
γ2

8

= −γ|Pt(yt−1)− yt|+
γ2

8
.

Summing over t:

log

(
Zn+1

Z1

)
≤ −γnLP (yn) +

nγ2

8
. (4)

Combining (3) and (4) we get

−γnmin
j
Lj(y

n)− logN ≤ log

(
Zn+1

Z1

)
≤ −γnLP (yn) +

nγ2

8
.

Rearranging the terms we have:

LP (yn) ≤ min
j
Lj(y

n) +
logN

γ
+
nγ

8
.

Set γ =
√

8 logN/n to get

LP (yn)− min
1≤j≤N

Lj(y
n) ≤

√
logN

2n
.

�

The result held for a specific time n. We can make the result uniform over time as follows.

If we set γt =
√

8 logN/t then we have:

LP (yn) ≤ min
j
Lj(y

n) +

√
1 + 12n logN

8

for all n and for all y1, y2, . . . , yn.

Now suppose that F is an infinite class. A set G = {G1, . . . , GN} is an r-covering if, for

every F and every yn there is a Gj such that

n∑

t=1

|Ft(yt−1)−Gj,t(y
t−1)| ≤ r.

Let N(r) denote the size of the smallest r-covering.
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Theorem 4 (Cesa-Bianchi and Lugosi) We have that

Vn(F) ≤ inf
r>0

(
r

n
+

√
logN(r)

2n

)

Cesa-Bianchi and Lugosi also construct a predictor that nearly achieves the bound of the

form

Pt =
∞∑

k=1

akP
(k)
t

where P
(k)
t is a predictor based on a finite subset of F .

Using batchification it is possible to use online learning for non-online learning. Suppose

we are given data: (Z1, . . . , Xn) where Zi = (Xi, Yi) and an arbitrary algorithm A that

takes data and outputs classifier H. We used uniform convergence theory to analyze H but

online methods provide an alternative analysis. 3 We apply A sequentially to get classifiers

H0, H1, . . . , Hn. Let

Mn =
1

n

n∑

i=1

`(Ht−1(Xt), Yt)

To choose a final classifier:

1. usual batch method: use the last one Hn

2. average: H = 1
n

∑n
i=1Ht−1

3. selection: choose Ht to minimize

1

t

t∑

i=1

`(Ht(Xt), Yt) +

√
1

2(n− t) log

(
n(n+ 1)

δ

)

Analyzing Hn requires assumptions on A, uniform convergence etc. This is not needed for

the other two methods.

Theorem 5 If ` is convex:

P

(
R(H) ≥Mn +

√
2

n
log

(
1

δ

))
≤ δ.

For any `,

P

(
R(Ĥ) ≥Mn +

√
36

n
log

(
2(n+ 1)

δ

))
≤ δ.

3Reference: Cesa-Bianchi, Conconi and Gentile (2004).
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Homework 1
36-705

Due: Thursday Sept 8 by 3:00

From Casella and Berger:

1. Chapter 1, problem 1.47.

2. Chapter 1, problem 1.49.

3. Chapter 2, problem 2.1.

4. Chapter 2, problem 2.3.

5. Chapter 2, problem 2.7a.

6. Chapter 2, problem 2.15.

7. Chapter 2, problem 2.30.

8. Chapter 3, problem 3.32.

9. Chapter 4, problem 4.4.

10. Chapter 4, problem 4.5.
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Homework 2
36-705

Due: Thursday Sept 15 by 3:00

1. Let Xn be a sequence of random variables such that Xn ≥ 0 for all n. Suppose that
P(Xn > t) ≤ (1

t
)k where k > 1. Derive an upper bound on E(Xn).

2. Let X1, . . . , Xn ∼ Unif(0, 1). Let Y = max1≤i≤nXi.

(i) Bound E(Y ) using the method we derived in lecture notes 2.

(ii) Find an exact expression for E(Y ). Compare the result to part (i).

3. An improvement on Hoeffding’s inequality is Bernstein’s inequality. Let X1, . . . , Xn be
iid, with mean µ, Var(Xi) = σ2 and |Xi| ≤ c. Then Bernstein’s inequality says that

P
(
|Xn − µ| > ε

)
≤ 2 exp

{
− nε2

2σ2 + 2cε/3

}
.

(When σ is sufficiently small, this bound is tighter than Hoeffding’s inequality.) Let
X1, . . . , Xn ∼ Uniform(0, 1) and An = [0, 1/n]. Let pn = P(Xi ∈ An) and let

p̂n =
1

n

n∑

i=1

IAn(Xi).

(i) Use Hoeffding’s inequality and Bernstein’s inequality to bound

P(|p̂n − pn| > ε).

(ii) Show that the bound from Bernstein’s inequality is tighter.

(iii) Show that Hoeffding’s inequality implies p̂n − pn = O
(√

1
n

)
but that Bernstein’s

inequality implies p̂n − pn = OP (1/n).

4. Show that Xn = oP (an) and Yn = OP (bn) implies that XnYn = oP (anbn).
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Homework 3
36-705

Due: Thursday Sept 22 by 3:00

1. Let A be a class of sets. Let B = {Ac : A ∈ A}. Show that sn(B) = sn(A).

2. Let Let A and B be classes of sets. Let

C =
{
A
⋂

B : A ∈ A, B ∈ B
}
.

Show that
sn(C) ≤ sn(A)sn(B).

3. Show that sn+m(A) ≤ sn(A)sm(A).

4. Let

A =

{
A = [a, b] ∪ [c, d] : a, b, c, d ∈ R, a ≤ b ≤ c ≤ d

}
.

Find VC dimension of A.
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Homework 4
36-705

Due: Thursday September 29 by 3:00

1. 5.33

2. 5.34

3. 5.35

4. 5.36

5. 5.39

1



Homework 5
36-705

Due: Thursday October 6 by 3:00

1. 6.2

2. 6.4

3. 6.9 (b) and (e).

4. Write (x1, . . . , xn) ∼ (y1, . . . , yn) to mean that the likelihood function based on (x1, . . . , xn)
is proportional to the likelihood function based on (y1, . . . , yn). The equivalence rela-
tion ∼ induces a partition Π of the sample space: (x1, . . . , xn) and (y1, . . . , yn) are in
the same element of the partition if and only if (x1, . . . , xn) ∼ (y1, . . . , yn). Show that
Π is a minimal sufficient partition.

5. 7.1

6. 7.5 (a).

7. 7.8.

8. 7.9.

9. In class, we found the minimax estimator for the Bernoulli. Here, you will fill in the
details. Let X1, . . . , Xn ∼ Bernoulli(p). Let L(p, p̂) = (p− p̂)2.

(a) Let p̂ be the Bayes estimator using a Beta(α, β) prior. Find the Bayes estimator.

(b) Compute the risk function.

(c) Compute the Bayes risk.

(d) Find α and β to make the risk constant and hence find the minimax estimator.
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Homework 6
36-705

Due: Thursday October 20 by 3:00

1. 10.1

2. 10.2

3. 10.4

4. 10.18

5. 10.19

1



Homework 7
36-705

Due: Thursday October 27 by 3:00

1. 8.13 (a,b)

2. 8.14

3. 8.15

4. 8.17

5. 8.20

6. 10.31 (a,b,c,e)

7. Show that, when H0 is true, then the p-value has a Uniform (0,1) distribution.

1



Homework 8
36-705

Due: Thursday November 10 2010 by 3:00

1. 9.1.

2. 9.4(a)

3. 9.33(a)

4. Let X1, . . . , Xn ∼ Uniform(0, θ). Find the 1−α likelihood ratio confidence interval for
θ. Note: the limiting χ2 theory does not apply to this example. You need to find the
cutoff value directly.

5. Let X1, . . . , Xn ∼ p and assume that 0 ≤ Xi ≤ 1. The histogram density estimator is
defined as follows. Divide [0, 1] into m bins B1 = [0, 1/m], B2 = (1/m, 2/m], . . . ,. Let

h = 1/m and let θ̂j = n−1
∑n

i=1 I(Xi ∈ Bj). Let

p̂(x) =
θ̂j
h

when x ∈ Bj. Find the asymptotic MSE. Find the best h. Find the rate of convergence
of the estimator.

1



Homework 9
10/36-705

Due: Thursday Nov 17 by 3:00

1. Let X1, . . . , Xn ∼ p and let p̂h denote the kernel density estimator with bandwidth h.
Let R(h) = E[L(h)] denote the risk, where

L(h) =

∫
(p̂h(x)− p(x))2dx.

(a) Define R̃(h) = E[L̃(h)] where

L̃(h) =

∫
(p̂h(x))2dx− 2

∫
p̂h(x)p(x)dx.

Show that minimizing R̃(h) over h is equivalent to minimizing R(h).

(b) Let Y1, . . . , Yn be a second sample from p. Define

R̂(h) =

∫
(p̂h(x))2dx− 2

n

n∑

i=1

p̂h(Yi)

where p̂h is still based on X1, . . . , Xn. Show that ER̂(h) = R̃(h). (Hence, R̂(h) can be
used as an estimate of the risk.)

2. Again, let p̂h denote the kernel density estimator. Use Hoeffding’s inequality to find a
bound on P(|p̂h(x)− ph(x)| > ε) where ph(x) = E(p̂h(x)).

3. Let X1, . . . , Xn ∼ Bernoulli(θ). Let θ̂n = n−1
∑n

i=1Xi. Let X∗
1 , . . . , X

∗
n denote a

bootstrap sample. Let θ̂∗ = n−1
∑n

i=1X
∗
i . Find the following four quantities:

E(θ̂∗|X1, . . . , Xn), E(θ̂∗), V(θ̂∗|X1, . . . , Xn), V(θ̂∗).

4. The bootstrap estimate of Var(θ̂n) is V(θ̂∗|X1, . . . , Xn). (In other words, when B →∞,

the bootstrap estimate of variance converges to V(θ̂∗|X1, . . . , Xn).) Show that the
bootstrap is consistent, in the sense that

V(θ̂∗|X1, . . . , Xn)

Var(θ̂n)

P→ 1.
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Homework 10
36/10-705

Due: Thursday December 1 2010 by 3:00

1. 7.23

2. 9.27

3. Suppose that V =
∑k

j=1(Zj + θj)
2 where Z1, . . . , Zk are independent, standard Normal

random variables. We say that V has a non-central χ2 distribution with non-centrality
parameter λ =

∑
j θ

2
j and k degrees of freedom. We write V ∼ χ2

k(λ).

(a) Show that if V ∼ χ2
k(λ) then E(V ) = k + λ and Var(V ) = 2(k + 2λ).

(b) Let Yi ∼ N(µi, 1) for i = 1, . . . , n. Find the posterior distribution of µ =
(µ1, . . . , µk) using a flat prior.

(c) Find the posterior distribution of τ =
∑

i µ
2
i .

(d) Find the mean τ̂ of the posterior.

(e) Find the bias and variance of τ̂ .

(f) Show that τ̂ is not a consistent estimator of τ . (Technically, the parameter τ is
changing with n. You may assume that τ is bounded as n increases.) Hint: you may
use the fact that if V ∼ χ2

k(λ), then (V − E(V ))/
√
Var(V ) ≈ N(0, 1).

(g) Find cn so that P (τ ∈ Cn|X1, . . . , Xn) = 1− α where Cn = [cn,∞).

(h) Construct an unbiased estimator of τ . Compare this to the Bayes estimator.

(i) Find a (frequentist) confidence interval An = [an,∞) such that Pµ(τ ∈ An) = 1−α
for all µ. Compare this to the Bayes posterior interval Cn.

1
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3.32 a.  
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3.32 b. 
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36-705 Intermediate Statistics HW2

Problem 1

As X ≥ 0 with Prob 1, we have

E[X] =

∫ ∞

0

(1− F (t))dt =

∫ ∞

0

P (X > t)dt =

∫ a

0

P (X > t)dt+

∫ ∞

a

P (X > t)dt

With P (X > t) ≤ 1 and P (X > t) ≤ (1/t)k, we have the upper bound of E[X],

E[X] =

∫ a

0

P (X > t)dt+

∫ ∞

a

P (X > t)dt ≤
∫ a

0

1dt+

∫ ∞

a

(1/t)kdt = a+
1

(k − 1)ak−1
.

Set the derivative of it to be 0, we get 1 + 1/ak = 0, so we get a = 1. The upper bound of
E[X] is 1 + 1

k−1 = k
k−1 .

Problem 2

The cumulative density function of Y is

P (Y ≤ y) = P (Xi ≤ y, 1 ≤ i ≤ n) =
n∏

i=1

P (Xi ≤ y) = yn, 0 ≤ y ≤ 1.

So, the expected value of Y is

E[Y ] =

∫ 1

0

P (Y > t)dt =

∫ 1

0

(1− tn)dt = 1− 1

n+ 1
=

n

n+ 1
.

Problem 3

(i) Note that pn = P (Xi ∈ An) = 1/n. Let Yi = IAn(Xi), then

E[Yi] = E[IAn(Xi)] = P (Xi ∈ An) = 1/n,

Ȳn =
1

n

n∑

i=1

Yi =
1

n

n∑

i=1

IAn(Xi) = p̂n,

therefore:
1. Hoeffding’s inequality: Yi = 0 or 1, thus the bound is 0 ≤ Yi ≤ 1, and finally

P (|p̂n − pn| ≥ ε) = P (|Ȳn − E[Y ]| ≥ ε) ≤ 2 exp{− 2nε2

(1− 0)2
} = 2e−2nε

2

;

1



2. Bernstein’s inequality: still 0 ≤ Yi ≤ 1, hence |Yi| ≤ 1, and the variance is

V ar(Yi) = 1/n(1− 1/n) =
n− 1

n2
,

as Yi ∼ Bernoulli(1/n).
So, we have

P (|p̂n − pn| ≥ ε) = P (|Ȳn − E[Y ]| ≥ ε) ≤ 2 exp{− nε2

2(n− 1)/n2 + 2ε/3
}.

(ii) When ε is small and n is large, 2(n− 1)/n2 + 2ε/3 will be very small, in the order
of 1/n, so 2(n− 1)/n2 + 2ε/3 < 1/2, and so we have

2 exp{− nε2

2(n− 1)/n2 + 2ε/3
} ≤ 2e−2nε

2

.

Therefore, Bernstein’s inequality is tighter than Hoeffding’s inequality.
(iii) Use Hoeffding’s inequality,

P (
|p̂n − pn|

1/
√
n
≥ C) = P (|p̂n − pn| ≥ C/

√
n) ≤ 2e−2n(C/

√
n)2 = 2e−2C

2

.

So, for any δ, when C is large enough, there is P ( p̂n−pn
1/
√
n
≥ C) ≤ δ, therefore, Hoeffiding’s

inequality implies p̂n − pn = Op(1/
√
n).

Use Bernstein’s inequality, we have

P (
|p̂n − pn|

1/n
≥ C) = P (|p̂n − pn| ≥ C/n) ≤ 2 exp{− nC2/n2

2(n− 1)/n2 + 2C/3n
}.

Simplify the exponential part, we have

− nC2/n2

2(n− 1)/n2 + 2C/3n
= − C2/n

2(n− 1)/n2 + 2C/3n
= − C2

2(n− 1)/n+ 2C/3
≈ −3C

2
,

for large n and large C. So, in all, we have

P (
|p̂n − pn|

1/n
≥ C) ≤ 2e−

3C
2 .

For any δ, there is C large enough, such that the probability is smaller than δ. So, Bern-
stein’s inequality implies p̂n − pn = Op(1/n).

2



Problem 4
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36-705 Intermediate Statistics HW3

Problem 1

Notice that (A∩F )∩(Ac∩F ) = (A∩Ac)∩F = ∅. On the other hand, (A∩F )∪(Ac∩F ) =
(A ∪ Ac) ∩ F = Ω ∩ F = F . This shows A and Ac pick different parts of F , that is,
(Ac∩F ) = F\(A∩F ). For any finite set F w/ n elements, say the total number of distinct
A ∩ F is m1, then for every distinct A ∩ F , there is a corresponding Ac ∈ B such that
Ac ∩ F picks the other part of F . Then the total number of distinct Ac ∩ F is also m1. So
we have S(A, F ) = S(B, F ), taking “sup” on both sides, we have,

sn(A) = sn(B)

Problem 2

C = {A∩B : A ∈ A, B ∈ B}. Notice that for C ∈ C, C∩F = (A∩B)∩F = (A∩F )∩(B∩F ),
therefore, A∩F ⊆ C∩F ⊆ F , and B∩F ⊆ C∩F ⊆ F . For any finite set F w/ n elements,
say the total number of distinct A ∩ F is m1 and the total number of distinct B ∩ F is
m2. Then, the total number of distinct C ∩ F w/ C = A ∩ B, i.e. the total number of
distinct intersections (A∩F )∩ (B∩F ) is at most m1m2 (the maximum number of distinct
pairs). That is S(C, F ) 6 S(A, F )S(B, F ), taking “sup” on both sides,

sn(C) 6 sup
F∈Fn

[S(A, F )S(B, F )]

6 sup
F∈Fn

S(A, F ) · sup
F∈Fn

S(B, F ) = sn(A)sn(B).

Problem 3

Let Fn+m = Fn ∪ Fm where Fn with n elements and Fm with m elements are disjoint and
Fn+m have m+n elements. For A ∈ A, A∩Fn+m = A∩ (Fn ∪Fm) = (A∩Fn)∪ (A∩Fm).
Therefore, A∩Fn ⊆ A∩Fn+m ⊆ Fn+m, and A∩Fm ⊆ A∩Fn+m ⊆ Fn+m. For any finite set
Fn w/ n elements and Fm w/ m elements, say the total number of distinct A∩Fn is n1 and

1



the total number of distinct A∩Fm is m1. Then, the total number of distinct A∩Fn+m

w/ Fn+m = Fn ∪ Fm, which are subsets of distinct unions (A ∩ Fn) ∪ (A ∩ Fm) is at most
n1m1 (the maximum number of distinct pairs). That is S(A, Fn+m) 6 S(A, Fn)S(A, Fm),
taking “sup” on both sides,

sn+m(A) 6 sup
Fn∈Fn,Fm∈Fm

[S(A, Fn)S(A, Fm)]

6 sup
Fn∈Fn

S(A, Fn) · sup
Fm∈Fm

S(A, Fm) = sn(A)sm(A).

Problem 4

A is the set of single intervals or joint of two separate intervals on the real line.

1. Let F4 = {−1, 0, 1, 2} with 4 elements. Then

1).[−2,−1.5] ∩ F = ∅,
2).[−1.5,−0.5] ∩ F = {−1},
3).[−1.5,−0.5] ∩ F = {−1, 0},
4).[−1.5, 1.5] ∩ F = {−1, 0, 1},
5).[−1.5, 2.5] ∩ F = {−1, 0, 1, 2},
6).[−0.5, 0.5] ∩ F = {0},
7).[−0.5, 1.5] ∩ F = {0, 1},
8).[−0.5, 2.5] ∩ F = {0, 1, 2},
9).[0.5, 1.5] ∩ F = {1},
10).[0.5, 2.5] ∩ F = {1, 2},
11).[1.5, 2.5] ∩ F = {2},
12).[−1.5,−0.5] ∪ [0.5, 1.5] ∩ F = {−1, 1},
13).[−1.5, 0.5] ∪ [1.5, 2.5] ∩ F = {−1, 2},
14).[−0.5, 0.5] ∪ [1.5, 2.5] ∩ F = {0, 2},
15).[−1.5, 0.5] ∪ [1.5, 2.5] ∩ F = {−1, 0, 2},
16).[−1.5,−0.5] ∪ [0.5, 2.5] ∩ F = {−1, 1, 2}

So s(A, F4) = 24 = 16 and s4(A) = 16. The VC dimension of A, d(A) = max{n : sn(A) =
2n} ≥ 4.

2. For set Fn, st. n ≥ 5, eg F5 = {−1, 0, 1, 2, 3}, it is impossible A ∩ F5 = {−1, 0, 2},
since any interval covering {−1, 1} will also cover {0}, similarly, the interval covering {0, 2}
will also cover {1}. This is suffice to show that the VC dimension of A is less than 5. So
we have 4 ≤ d(A) < 5, that is d(A) = 4.

2



Test 1 Solutions

Problem 1

X1 and X2 are iid Unif(0,2), then,

fX1,X2(x1, x2) = fX1(x1)fX2(x2) = I(x1 ∈ (0, 2))I(x2 ∈ (0, 2))

=

{
1
4 0 < x1 < 2, 0 < x2 < 2
0, ow

FY (y) = P (Y ≤ y) = P (X1 −X2 ≤ y) = P (X1 ≤ X2 + y) =

∫

A
fX1,X2(x1, x2)dx1dx2

where, A = {(x1, x2) ∈ R2 : x1 ≤ x2 + y}. Since the integral is over a function which takes
value 1

4 over a square and 0 everywhere else, the value of the integral is equal to 1
4 of the area

of the region determined by the intersection of A with the square 0 < x1 < 2, 0 < x2 < 2.
The four different cases are shown in the last page.

The cdf is,

FY (y) =





0 y ≤ −2
(2+y)2

8 −2 < y < 0

1− (2−y)2
8 0 ≤ y ≤ 2

1 y > 2

Differentiate it wrt y to get the pdf,

fY (y) =
dFY

dy
=





2−y
4 0 ≤ y ≤ 2

2+y
4 −2 ≤ y < 0
0 ow

Problem 2

Let Xi ∼iid Bernoulli(p) for i = 1, 2, ..., n. Then X =
∑n

i=1Xi has Binomial(n, p)
distribution and the MGF of X, MX =

∏n
i=1MXi = (MXi)

n. We know the MGF of
Bernoulli distribution is

MX1 = E[etX1 ] = etp + e0(1− p)

1



Then we have

MX = (MX1)n = (etp + (1− p))n

Problem 3

We know that,

E(g(X)|Y ) =

∫
g(x)p(x|y)dx

Then,

E(E(g(X)|Y )) =

∫
E(g(X)|Y )p(y)dy

=

∫
[

∫
g(x)p(x|y)dx]p(y)dy

=

∫ ∫
g(x)p(x|y)p(y)dydx

=

∫
g(x)[

∫
p(x, y)dy]dx

=

∫
g(x)p(x)dx

= E(g(X))

Problem 4

We know that X ∼ Unif(−2, 1) and Y = e|X|, then

Y =

{
eX 0 ≤ x ≤ 1
e−X −2 ≤ x < 0

and 1 ≤ y ≤ e2. The attached figure shows how the function looks like.
The cdf is

FY (y) = P (Y ≤ y) = P (e|X| ≤ y) =





0 y < 1

P (− log(y) ≤ x ≤ log(y)) =
∫ log y
− log y

1
3dx = 2

3 log y 1 ≤ y ≤ e

P (− log(y) ≤ x ≤ 1) =
∫ 1
− log y

1
3dx = log y+1

3 e ≤ y < e2

1 y ≥ e2

Differentiate the cdf with respect to y, we get the pdf,

pY (y) =





2
3y 1 ≤ y ≤ e
1
3y e ≤ y < e2

0 ow

2



Intermediate	Statistics	HW4	
 

5.33 

Since       lim , lim 0
nn X X x XF x F x F x   , for any  , we can find an m and an  1N  such that 

  1 / 2nP X m      for n> 1N . Then, since   lim 1n nP Y c m    , we can find an  2N  such that 

  1 / 2nP Y c m      for n> 2N . 

     
       

Note that 1 ,  then

, 1

1 / 2 1 / 2 1 1
n n n n n n

P A B P A P B

P X Y c P X m Y c m P X m P Y c m

  

  

             

      



 

for   1 2max ,n N N . Thus   lim 1n n nP X Y c    . 

 

 



5.36 (a) 

        
           2

| 2 2 2

| | 4 2 4 4 8

E Y E E Y N E N E N
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(b) 
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                     


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  
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



 
32

32
2

2

2 8

2

2 8 2

   Taylor expansion
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t t

t t
t

e e


 


 

         

          





 

which is the mgf of N(0,1). 
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Problem 1 (C&B 6.2)

Problem 2 (C&B 6.4)

Problem 3 (C&B 6.9)

(b)

(e)

1



Problem 4

Refer to Notes 6 p.2 for the definition of minimal sufficient partition.
Let θ be the parameter of the distribution and f be the joint pdf.

f(x1, ..., xn|θ)
f(y1, ..., yn|θ)

is independent of θ if and only if (x1, ..., xn) ∼ (y1, ..., yn).
Therefore, by C&B Theorem 6.2.13,

∏
is a minimal sufficient partition for θ.

Problem 5 (C&B 7.1)

1. x = 0, the likelihood L(θ) = 1
3
I(θ = 1)+ 1

4
I(θ = 2)+0 ·I(θ = 3) = 1

3
I(θ = 1)+ 1

4
I(θ =

2), therefore, the MLE θ̂ = 1;

2. x = 1, L(θ) = 1
3
I(θ = 1) + 1

4
I(θ = 2), θ̂ = 1;

3. x = 2, L(θ) = 1
4
I(θ = 2) + 1

4
I(θ = 3), θ̂ = 2 or θ̂ = 3;

4. x = 3, L(θ) = 1
6
I(θ = 1) + 1

4
I(θ = 2) + 1

2
I(θ = 2), θ̂ = 3;

5. x = 4, L(θ) = 1
6
I(θ = 1) + 1

4
I(θ = 3), θ̂ = 3.

2



Finally,

θ̂ =





1 X = 0, 1;
2 or 3 X = 2;
3 X = 3, 4.

Problem 6 (C&B 7.5(a))

Problem 7 (C&B 7.8)

Problem 8 (C&B 7.9)

3



Problem 9

(a) Bayes estimator under square error loss L(p, p̂) = (p − p̂)2 is the posterior mean.

Xi
iid∼ Bernoulli(p), p ∼ Beta(α, β) are conjugate, the posterior is p|X ∼ Beta(α +∑
iXi, β + n−∑iXi). Therefore, Bayes estimator p̂ =

α+
P

iXi

α+β+n
.

(b) Risk function for p̂

R(p, p̂) = Ep[L(p, p̂)] = MSE(p̂)

= (E[p̂]− p)2 + V [p̂]

= (
α + np

α + β + n
− p)2 +

np(1− p)
(α + β + n)2

=
(α(1− p)− βp)2

(α + β + n)2
+

np(1− p)
(α + β + n)2

(c) Bayes risk for p̂

B(π, p̂) =

∫
R(p, p̂)π(p)dp

4



=
1

(α + β + n)2

∫
[(α + β)2(p− α

α + β
)2 + np− np2]π(p)dp

=
1

(α + β + n)2
[(α + β)2

αβ

(α + β)2(α + β + 1)
+

nα

α + β
− n(

αβ

(α + β)2(α + β + 1)
+

α2

(α + β)2
)]

=
1

(α + β + n)2
[

αβ

α + β + 1
+

nα

α + β
− nα(α + 1)

(α + β)(α + β + 1)
]

=
1

(α + β + n)2
[

αβ

α + β + 1
+

nαβ

(α + β)(α + β + 1)
]

=
αβ

(α + β)(α + β + 1)(α + β + n)

(d) The risk

R(p, p̂) =
(α(1− p)− βp)2

(α + β + n)2
+

np(1− p)
(α + β + n)2

=
1

(α + β + n)2
{p2[(α+β)2−n]+p[n−2α(α+β)]+α2}

is a 2nd order polynomial of p. To make it constant, set

{
(α + β)2 − n = 0;
n− 2α(α + β) = 0.

=⇒
{
α =

√
n
2

;

β =
√
n
2
.

Thus p̂m =
α+

P
iXi

α+β+n
=

√
n/2+

P
iXi√

n+n
is the minimax estimator.

5



36705 Intermediate Statistics Homework 6 Solutions

Problem 1 C & B 10.1

Chapter 10

Asymptotic Evaluations

10.1 First calculate some moments for this distribution.

EX = θ/3, EX2 = 1/3, VarX =
1

3
− θ2

9
.

So 3X̄n is an unbiased estimator of θ with variance

Var(3X̄n) = 9(VarX)/n = (3− θ2)/n → 0 as n → ∞.

So by Theorem 10.1.3, 3X̄n is a consistent estimator of θ.

10.3 a. The log likelihood is

−n

2
log (2πθ)− 1

2

�
(xi − θ)/θ.

Differentiate and set equal to zero, and a little algebra will show that the MLE is the root
of θ2 + θ−W = 0. The roots of this equation are (−1±

√
1 + 4W )/2, and the MLE is the

root with the plus sign, as it has to be nonnegative.

b. The second derivative of the log likelihood is (−2
�

x2
i + nθ)/(2θ3), yielding an expected

Fisher information of

I(θ) = −Eθ
−2

�
X2

i + nθ

2θ3
=

2nθ + n

2θ2
,

and by Theorem 10.1.12 the variance of the MLE is 1/I(θ).

10.4 a. Write �
XiYi�
X2

i

=

�
Xi(Xi + �i)�

X2
i

= 1 +

�
Xi�i�
X2

i

.

From normality and independence

EXi�i = 0, VarXi�i = σ2(µ2 + τ2), EX2
i = µ2 + τ2, VarX2

i = 2τ2(2µ2 + τ2),

and Cov(Xi, Xi�i) = 0. Applying the formulas of Example 5.5.27, the asymptotic mean
and variance are

E

��
XiYi�
X2

i

�
≈ 1 and Var

��
XiYi�
X2

i

�
≈ nσ2(µ2 + τ2)

[n(µ2 + τ2)]2
=

σ2

n(µ2 + τ2)

b. �
Yi�
Xi

= β +

�
�i�
Xi

with approximate mean β and variance σ2/(nµ2).

Problem 2 C & B 10.2

36-705 Intermediate Statistics HW6 Oct 22, 2010

Problem 1 (20 points)

By theorem 10 in lecture 4,

Wn
P−→ θ, an

P−→ 1 =⇒ anWn
P−→ 1θ = θ.

bn
P−→ 0 =⇒ anWn + bn

P−→ 1θ + 0 = θ.

Problem 2 (20 points, 10 points each)

a The log likelihood is

−n

2
log(2πθ) − 1

2

�
(xi − θ)2/θ.

Differentiate and set equal to zero, and a little algebra will show that the MLE is the
root of θ2 + θ − W = 0. The roots of this equation are (−1 ±

√
1 + 4W )/2, and the

MLE is the root with the plus sign, as it has to be nonnegative.

b The second derivative of the log likelihood is (−2
�

x2
i + nθ)/(2θ3), yielding an expec-

tatied Fisher information of

I(θ) = −Eθ
−2

�
X2

i + nθ

2θ3
=

2nθ + n

2θ2
,

and by Theorem 10.1.12 the variance of the MLE is 1/I(θ).

Problem 3 (30 points, 10 points each)

a �
XiYi�
X2

i

=

�
Xi(βXi + �i)�

X2
i

= β +

�
Xi�i�
X2

i

Since Xi and �i are normal and mutually independent, E[Xi�i] = EXiE�i = 0.

V ar[Xi�i] = EX2
i E�2 = (µ2 + τ 2)σ2

EX2
i = µ2

V arX2
i = 2 = 2τ 2(2µ2 + τ 2)

Cov(Xi, Xi�i) = E[(Xi − µ)(Xi�i − 0)] = E[X2
i �i] − µE[Xi�i] = 0

Using the Taylor theorem as in Example 5.5.27, the asymptotic mean and variance
are

E
��

XiYi�
X2

i

�
≈ β and Var

��
XiYi�
X2

i

�
≈ nσ2(µ2+τ2)

[n(µ2+τ2)]2
= σ2

n(µ2+τ2)

1

Problem 3 C & B 10.4

1



Chapter 10

Asymptotic Evaluations

10.1 First calculate some moments for this distribution.

EX = θ/3, EX2 = 1/3, VarX =
1

3
− θ2

9
.

So 3X̄n is an unbiased estimator of θ with variance

Var(3X̄n) = 9(VarX)/n = (3− θ2)/n → 0 as n → ∞.

So by Theorem 10.1.3, 3X̄n is a consistent estimator of θ.

10.3 a. The log likelihood is

−n

2
log (2πθ)− 1

2

�
(xi − θ)/θ.

Differentiate and set equal to zero, and a little algebra will show that the MLE is the root
of θ2 + θ−W = 0. The roots of this equation are (−1±

√
1 + 4W )/2, and the MLE is the

root with the plus sign, as it has to be nonnegative.

b. The second derivative of the log likelihood is (−2
�

x2
i + nθ)/(2θ3), yielding an expected

Fisher information of

I(θ) = −Eθ
−2

�
X2

i + nθ

2θ3
=

2nθ + n

2θ2
,

and by Theorem 10.1.12 the variance of the MLE is 1/I(θ).

10.4 a. Write �
XiYi�
X2

i

=

�
Xi(Xi + �i)�

X2
i

= 1 +

�
Xi�i�
X2

i

.

From normality and independence

EXi�i = 0, VarXi�i = σ2(µ2 + τ2), EX2
i = µ2 + τ2, VarX2

i = 2τ2(2µ2 + τ2),

and Cov(Xi, Xi�i) = 0. Applying the formulas of Example 5.5.27, the asymptotic mean
and variance are

E

��
XiYi�
X2

i

�
≈ 1 and Var

��
XiYi�
X2

i

�
≈ nσ2(µ2 + τ2)

[n(µ2 + τ2)]2
=

σ2

n(µ2 + τ2)

b. �
Yi�
Xi

= β +

�
�i�
Xi

with approximate mean β and variance σ2/(nµ2).

Problem 3 C & B 10.4

E

��
XiYi�
X2

i

�
≈ β

and

V ar

��
XiYi�
X2

i

�
≈ nσ2(µ2 + τ2)

[n(µ2 + τ2)]2
=

σ2

n(µ2 + τ2)

Chapter 10

Asymptotic Evaluations

10.1 First calculate some moments for this distribution.

EX = θ/3, EX2 = 1/3, VarX =
1

3
− θ2

9
.

So 3X̄n is an unbiased estimator of θ with variance

Var(3X̄n) = 9(VarX)/n = (3− θ2)/n → 0 as n → ∞.

So by Theorem 10.1.3, 3X̄n is a consistent estimator of θ.

10.3 a. The log likelihood is

−n

2
log (2πθ)− 1

2

�
(xi − θ)/θ.

Differentiate and set equal to zero, and a little algebra will show that the MLE is the root
of θ2 + θ−W = 0. The roots of this equation are (−1±

√
1 + 4W )/2, and the MLE is the

root with the plus sign, as it has to be nonnegative.

b. The second derivative of the log likelihood is (−2
�

x2
i + nθ)/(2θ3), yielding an expected

Fisher information of

I(θ) = −Eθ
−2

�
X2

i + nθ

2θ3
=

2nθ + n

2θ2
,

and by Theorem 10.1.12 the variance of the MLE is 1/I(θ).

10.4 a. Write �
XiYi�
X2

i

=

�
Xi(Xi + �i)�

X2
i

= 1 +

�
Xi�i�
X2

i

.

From normality and independence

EXi�i = 0, VarXi�i = σ2(µ2 + τ2), EX2
i = µ2 + τ2, VarX2

i = 2τ2(2µ2 + τ2),

and Cov(Xi, Xi�i) = 0. Applying the formulas of Example 5.5.27, the asymptotic mean
and variance are

E

��
XiYi�
X2

i

�
≈ 1 and Var

��
XiYi�
X2

i

�
≈ nσ2(µ2 + τ2)

[n(µ2 + τ2)]2
=

σ2

n(µ2 + τ2)

b. �
Yi�
Xi

= β +

�
�i�
Xi

with approximate mean β and variance σ2/(nµ2).

10-2 Solutions Manual for Statistical Inference

c.
1

n

� Yi

Xi
= β +

1

n

� �i
Xi

with approximate mean β and variance σ2/(nµ2).

10.5 a. The integral of ET 2
n is unbounded near zero. We have

ET 2
n >

�
n

2πσ2

� 1

0

1

x2
e−(x−µ)2/2σ2

dx >

�
n

2πσ2
K

� 1

0

1

x2
dx = ∞,

where K = max0≤x≤1 e−(x−µ)2/2σ2

b. If we delete the interval (−δ, δ), then the integrand is bounded, that is, over the range of
integration 1/x2 < 1/δ2.

c. Assume µ > 0. A similar argument works for µ < 0. Then

P (−δ < X < δ) = P [
√

n(−δ − µ) <
√

n(X − µ) <
√

n(δ − µ)] < P [Z <
√

n(δ − µ)],

where Z ∼ n(0, 1). For δ < µ, the probability goes to 0 as n → ∞.

10.7 We need to assume that τ(θ) is differentiable at θ = θ0, the true value of the parameter. Then
we apply Theorem 5.5.24 to Theorem 10.1.12.

10.9 We will do a more general problem that includes a) and b) as special cases. Suppose we want
to estimate λte−λ/t! = P (X = t). Let

T = T (X1, . . . , Xn) =

�
1 if X1 = t
0 if X1 �= t.

Then ET = P (T = 1) = P (X1 = t), so T is an unbiased estimator. Since
�

Xi is a complete
sufficient statistic for λ, E(T |�Xi) is UMVUE. The UMVUE is 0 for y =

�
Xi < t, and for

y ≥ t,

E(T |y) = P (X1 = t|
�

Xi = y)

=
P (X1 = t,

�
Xi = y)

P (
�

Xi = y)

=
P (X1 = t)P (

�n
i=2 Xi = y − t)

P (
�

Xi = y)

=
{λte−λ/t!}{[(n − 1)λ]y−te−(n−1)λ/(y − t)!}

(nλ)ye−nλ/y!

=

�
y

t

�
(n − 1)y−t

ny
.

a. The best unbiased estimator of e−λ is ((n − 1)/n)y.

b. The best unbiased estimator of λe−λ is (y/n)[(n − 1)/n]y−1

c. Use the fact that for constants a and b,

d

dλ
λabλ = bλλa−1(a + λ log b),

to calculate the asymptotic variances of the UMVUEs. We have for t = 0,

ARE

��
n − 1

n

�nλ̂

, e−λ

�
=

�
e−λ

�
n−1

n

�nλ
log

�
n−1

n

�n

�2

,
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Chapter 10

Asymptotic Evaluations

10.1 First calculate some moments for this distribution.

EX = θ/3, EX2 = 1/3, VarX =
1

3
− θ2

9
.

So 3X̄n is an unbiased estimator of θ with variance

Var(3X̄n) = 9(VarX)/n = (3− θ2)/n → 0 as n → ∞.

So by Theorem 10.1.3, 3X̄n is a consistent estimator of θ.

10.3 a. The log likelihood is

−n

2
log (2πθ)− 1

2

�
(xi − θ)/θ.

Differentiate and set equal to zero, and a little algebra will show that the MLE is the root
of θ2 + θ−W = 0. The roots of this equation are (−1±

√
1 + 4W )/2, and the MLE is the

root with the plus sign, as it has to be nonnegative.

b. The second derivative of the log likelihood is (−2
�

x2
i + nθ)/(2θ3), yielding an expected

Fisher information of

I(θ) = −Eθ
−2

�
X2

i + nθ

2θ3
=

2nθ + n

2θ2
,

and by Theorem 10.1.12 the variance of the MLE is 1/I(θ).

10.4 a. Write �
XiYi�
X2

i

=

�
Xi(Xi + �i)�

X2
i

= 1 +

�
Xi�i�
X2

i

.

From normality and independence

EXi�i = 0, VarXi�i = σ2(µ2 + τ2), EX2
i = µ2 + τ2, VarX2

i = 2τ2(2µ2 + τ2),

and Cov(Xi, Xi�i) = 0. Applying the formulas of Example 5.5.27, the asymptotic mean
and variance are

E

��
XiYi�
X2

i

�
≈ 1 and Var

��
XiYi�
X2

i

�
≈ nσ2(µ2 + τ2)

[n(µ2 + τ2)]2
=

σ2

n(µ2 + τ2)

b. �
Yi�
Xi

= β +

�
�i�
Xi

with approximate mean β and variance σ2/(nµ2).10-2 Solutions Manual for Statistical Inference

c.
1

n

� Yi

Xi
= β +

1

n

� �i
Xi

with approximate mean β and variance σ2/(nµ2).

10.5 a. The integral of ET 2
n is unbounded near zero. We have

ET 2
n >

�
n

2πσ2

� 1

0

1

x2
e−(x−µ)2/2σ2

dx >

�
n

2πσ2
K

� 1

0

1

x2
dx = ∞,

where K = max0≤x≤1 e−(x−µ)2/2σ2

b. If we delete the interval (−δ, δ), then the integrand is bounded, that is, over the range of
integration 1/x2 < 1/δ2.

c. Assume µ > 0. A similar argument works for µ < 0. Then

P (−δ < X < δ) = P [
√

n(−δ − µ) <
√

n(X − µ) <
√

n(δ − µ)] < P [Z <
√

n(δ − µ)],

where Z ∼ n(0, 1). For δ < µ, the probability goes to 0 as n → ∞.

10.7 We need to assume that τ(θ) is differentiable at θ = θ0, the true value of the parameter. Then
we apply Theorem 5.5.24 to Theorem 10.1.12.

10.9 We will do a more general problem that includes a) and b) as special cases. Suppose we want
to estimate λte−λ/t! = P (X = t). Let

T = T (X1, . . . , Xn) =

�
1 if X1 = t
0 if X1 �= t.

Then ET = P (T = 1) = P (X1 = t), so T is an unbiased estimator. Since
�

Xi is a complete
sufficient statistic for λ, E(T |�Xi) is UMVUE. The UMVUE is 0 for y =

�
Xi < t, and for

y ≥ t,

E(T |y) = P (X1 = t|
�

Xi = y)

=
P (X1 = t,

�
Xi = y)

P (
�

Xi = y)

=
P (X1 = t)P (

�n
i=2 Xi = y − t)

P (
�

Xi = y)

=
{λte−λ/t!}{[(n − 1)λ]y−te−(n−1)λ/(y − t)!}

(nλ)ye−nλ/y!

=

�
y

t

�
(n − 1)y−t

ny
.

a. The best unbiased estimator of e−λ is ((n − 1)/n)y.

b. The best unbiased estimator of λe−λ is (y/n)[(n − 1)/n]y−1

c. Use the fact that for constants a and b,

d

dλ
λabλ = bλλa−1(a + λ log b),

to calculate the asymptotic variances of the UMVUEs. We have for t = 0,

ARE

��
n − 1

n

�nλ̂

, e−λ

�
=

�
e−λ

�
n−1

n

�nλ
log

�
n−1

n

�n

�2

,

Problem 4, C & B 10.18

Denote the density of n(µ, σ2) as f1(x), then

Xi ∼ (1− δ)f1(x) + δf(x)

Let Y ∼ Bernoulli(δ), then P (Y = 1) = δ and P (Y = 0) = 1− δ and,

V ar(Xi) = E(V ar(Xi|Y )) + V ar(E(Xi|Y ))

Note that, V ar(Xi|Y = 1) = τ2 and V ar(Xi|Y = 0) = σ2,

E(V ar(Xi|Y )) = τ2δ + σ2(1− δ)

2



Also E(Xi|Y = 1) = θ, E(Xi|Y = 0) = µ and E(E(Xi|Y )) = θδ + (1− δ)µ,

V ar(E(Xi|Y )) =
∑

Y

(E(Xi|Y )− E(E(Xi|Y )))2P (Y )

= (θ − θδ − (1− δ)µ)2δ + (µ− δθ − (1− δ)µ)2(1− δ)
= δ(1− δ)(θ − µ)2

By the fact that Xi’s are iid,

V ar(X̄) = V ar(
1

n

∑

i

(Xi)) =
1

n
(τ2δ + σ2(1− δ) + δ(1− δ)(θ − µ)2)

Since the mean and variance of Cauchy distribution do not exist, any contaminate of
cauchy distribution will make (θ − µ)2 and τ2 infinite. So V ar(Xi) will be infinite.

Problem 5, C & B 10.19

Xi ∼ n(θ, σ2).
a).

V ar((̄X)) = V ar(
1

n

∑

i

Xi) =
1

n2
V ar(

∑

i

Xi)

=
1

n2
(
∑

i

V ar(Xi) + 2
∑

i<j

Cov(Xi, Xj))

=
1

n2
(nσ2 + 2

n(n− 1)

2
ρσ2)

=
1

n
(σ2 + (n− 1)ρσ2)

So, as n→∞, V ar(X̄) 9 0.
b).

V ar(X̄) =
1

n2
V ar(

∑

i

Xi)

=
1

n2
(
∑

i

V ar(Xi) + 2
∑

i<j

Cov(Xi, Xj))

=
1

n2
(nσ2 + 2

n∑

i=1

n∑

j=i+1

Cov(Xi, Xj))

3



=
1

n2
(nσ2 + 2

n∑

i=1

n∑

j=i+1

ρ|i−j|σ2)

=
1

n
σ2 +

2σ2

n2
ρ

1− ρ(n− 1− ρn
1− ρ )

c).
We know

Corr(X1, Xi) =
Cov(X1, Xi)√
V ar(X1)V ar(Xi)

And since δi ∼iid n(0, 1) we can use δ1 for all δi’s,

X2 = ρX1 + δ1

X3 = ρ(ρX1 + δ1) + δ1

. . .

Xi = ρi−1X1 +
i−2∑

j=0

ρjδ1

So,

Cov(X1, Xi) = Cov(X1, ρ
i−1X1 +

i−2∑

j=0

ρjδ1)

= ρi−1Cov(X1, X1) +

i−2∑

j=1

Cov(X1, ρ
jδ1)

= ρi−1V ar(X1)

= ρi−1σ2

Also,

V ar(Xi) = ρ2(i−1)V ar(X1) +
i−2∑

j=0

ρ2jV ar(δ1)

= ρ2(i−1)σ2 +
1− ρ2(i−1)

1− ρ2

=
1

1− ρ2

Given σ2 = 1
1−ρ2 ,

Corr(X1, Xi) = ρi−1

4



36-705 Intermediate Statistics Test 2 Solution

(1) Let X1, . . . , Xn ∼ Bernoulli(θ) where 0 < θ < 1. Let

Wn =
1

n

n∑

i=1

Xi(1−Xi).

(a) Show that there is a number µ such that Wn converges in probability µ.
Solution: As Xi is either 0 or 1, so Xi(1−Xi) = 0 with probability 1. Hence, Wn has

point mass probability 1 at 0. So, E[Wn] = 0, V ar(Xn) = 0.
Obviously, if we set µ = 0, we have P (|Wn − µ| > ε) = 0, for any ε > 0. Hence Wn

converges to µ in probability.

(b) Find the limiting distribution of
√
n(Wn − µ).

Solution: Wn − µ has point mass 1 at 0, so
√
n(Wn − µ) also has point mass 1 at 0.

The limiting distribution is
P (
√
n(Wn − µ) = 0) = 1.

(2) Let X1, . . . , Xn ∼ Normal(θ, 1).

(a) Let T = (X1, . . . , Xn−1). Show that T is not sufficient.
Solution: As T = (X1, . . . , Xn−1), the conditional distribution of (X1, . . . , Xn|T =

(t1, . . . , tn−1)) is

f(X1, . . . , Xn, T = t)

f(T )
=
f(X1 = t1, . . . , Xn−1 = tn−1, Xn)

f(X1 = t1, . . . , Xn−1 = tn−1)
=
f(Xn)

∏n−1
i=1 f(ti)∏n−1

i=1 f(ti)
= f(Xn),

where

f(Xn) =
1√
2π
e−

(Xn−θ)2
2 .

Obviously, the conditional pdf f(X1, . . . , Xn|T = (t1, . . . , tn−1)) depends on θ, so T is not
sufficient.

(b) Show that U =
∑n

i=1Xi is minimal sufficient.
Solution: From the solution above, the ratio between probability is

f(x1, . . . , xn|T )

f(y1, . . . , yn|T )
= e−

Pn
i=1(x

2
i−y

2
i )

2
+θ

Pn
i=1(xi−yi).

1



Obviously, when
∑n

i=1 xi =
∑n

i=1 yi, the ratio does not depend on θ, which means that
T (Xn) =

∑n
i=1 xi is sufficient. To make sure that the ratio does not depend on θ, there

must be
∑n

i=1 xi =
∑n

i=1 yi, so T (Xn) =
∑n

i=1 xi is also minimal.
In all, T (Xn) =

∑n
i=1 xi is minimal sufficient statistic.

(3) Let X1, . . . , Xn be drawn from a uniform distribution on the set

[0, 1]
⋃

[2, 2 + θ]

where θ > 0.

(a) Find the method of moments estimator θ̂ of θ.
Solution: The probability density function for X is

fX(x) =

{
1

1+θ
0 ≤ x ≤ 1, 2 ≤ x ≤ 2 + θ,

0 ow.

So, the expectation for X is

EX =

∫ 1

0

x

1 + θ
dx+

∫ 2+θ

2

x

1 + θ
dx =

θ2 + 4θ + 1

2(1 + θ)
.

To find the moment estimator, let

E[X] =
1

n

n∑

i=1

Xi = X̄,

and we get the solution

θ̂1 = X̄ − 2 +
√
X̄2 − 2X̄ + 3, θ̂2 = X̄ − 2−

√
X̄2 − 2X̄ + 3.

As θ > 0, only the θ̂1 is kept, and the estimator is

θ̂ = X̄ − 2 +
√
X̄2 − 2X̄ + 3.

(b) Find the mean squared error of θ̂.
Solution: The form is too complicated, so we use Delta method to find the approximate

MSE of θ̂.
In part (a), we have that

E[X] =
θ2 + 4θ + 1

2(1 + θ)
.

2



The variance for X can also be calculated, as

V ar(X) = E[X2]− (E[X])2 =
(θ + 2)3 − 7

3(1 + θ)
− (E[X])2,

which ends up as

V ar(X) =
θ4 + 4θ3 + 18θ2 + 28θ + 1

12(1 + θ)2
.

With CLT, we know that

1

n
X̄ ∼ N(

θ2 + 4θ + 1

2(1 + θ)
,

1

n

θ4 + 4θ3 + 18θ2 + 28θ + 1

12(1 + θ)2
)

Let g(x) = x− 2 +
√
x2 − 2x+ 3, so θ̂ = g(X̄), with

g(
θ2 + 4θ + 1

2(1 + θ)
) = θ,

g′(
θ2 + 4θ + 1

2(1 + θ)
) =

2(θ + 1)2

(1 + θ)2 + 2
,

and the approximate MSE is

MSE(θ̂) = (E[(θ − θ̂)])2 + V ar(θ̂)

= (
2(θ + 1)2

(1 + θ)2 + 2
)2

1

n

θ4 + 4θ3 + 18θ2 + 28θ + 1

12(1 + θ)2

=
1

n
(

θ + 1

(1 + θ)2 + 2
)2
θ4 + 4θ3 + 18θ2 + 28θ + 1

3

(c) Show that θ̂ is consistent.
Solution: According to the result in part (b), the mean squared error of θ̂ goes to 0 in

the order of O(1/n), so θ̂ → θ in probability, which means that θ̂ is consistent.

(4) Let X1, . . . , Xn ∼ N(θ, 1). Let τ = eθ + 1.

(a) Find the maximum likelihood estimator τ̂ of τ and show that it is consistent.
Solution: The likelihood function for θ is

L(θ;Xn) =
n∏

i=1

1√
2π
e−

(xi−θ)2
2 ,

3



hence the log-likelihood function is

l(θ;Xn) = −n
2

log 2π −
n∑

i=1

(xi − θ)2
2

.

Take derivative of l(θ), we have

∂

∂θ
l(θ) =

n∑

i=1

xi − nθ.

To find the MLE of θ, let ∂
∂θ
l(θ) = 0, and the solution is

θ̂ =
1

n

n∑

i=1

xi.

As this is the only solution for the derivative function, so this is global maximum, and
MLE for θ is θ̂ = 1

n

∑n
i=1 xi.

As MLE of function g(θ) is function of MLE g(θ̂), so MLE for τ is

τ̂ = e
1
n

Pn
i=1 xi + 1.

Obviously, the distribution of θ̂ is θ̂ ∼ N(θ, 1/n), so θ̂ → θ in probability. As τ̂ is
a continuous function of θ̂, according to continuous mapping theorem, τ̂ → g(θ) = τ in
probability, which means that MLE τ̂ is consistent.

(b) Consider some loss function L(τ, τ̂). Define what it means for an estimator to be a
minimax estimator for τ .

Solution: We say τ̂ is a minimax estimator of τ , if for any other estimator τ̃ , there is

sup
τ
R(τ, τ̂) ≤ sup

τ
R(τ, τ̃),

where

R(τ, τ̂) = EτL(τ, τ̂) =

∫
L(τ, τ̂(xn))f(xn; τ)dxn.

(c) Let π be a prior for θ. Find the Bayes estimator for τ under the loss L(τ, τ̂) =
(τ̂ − τ)2/τ .

Solution: To find the Bayes estimator, for any xn, we want to choose τ̂(xn) to minimize

r(τ̂ |xn) =

∫ ∞

−∞
L(τ, τ̂(xn))π(θ|xn)dθ.

4



Introduce Loss function L(τ, τ̂) = (τ̂−τ)2
τ

in the equation, and take the derivative of
r(τ̂ |xn) with respect to τ̂ , we have

∂

∂τ̂
r(τ̂ |xn) =

∫ ∞

−∞

2(τ̂ − τ)

τ
π(θ|xn)dθ.

Let ∂
∂τ̂
r(τ̂ |xn) = 0, the equation is

∫ ∞

−∞

2(τ̂ − τ(θ))

τ
π(θ|xn)dθ = 0,

which is equivalent with

τ̂

∫ ∞

−∞

1

τ
π(θ|xn)dθ −

∫ ∞

−∞
π(θ|xn)dθ = 0,

hence the solution is

τ̂(xn) = 1/

∫ ∞

−∞

1

τ
π(θ|xn)dτ = 1/E[1/τ |xn].

5
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10.31 a. By CLT, we have       1 1 1 1 1 2 2 2 2 2ˆ ˆ, 1 / , , 1 /
d d

p p p p n p p p p n     . Stacking them 

together, and considering that they are independent, we have 

 
 

1 1 1 1 1

2 2 22 2

ˆ 1 / 0
,

ˆ 0 1 /

dp p p p n

p p np p

    
          
 . Using Delta’s method, it is easy to show that 

    1 2 1 2 1 1 1 1 1 2ˆ ˆ , 1 / 1 /
d

p p p p p p n p p n      . Under  0 1 2:H p p p  .  p̂  is the MLE of p, 

thus  ˆ
p

p p . Combining these facts with Slutzkey’s theorem, we get

 

Therefore,  2
1

d

T  . 



 

 

 

 

 

 

 

 

 

 



7. Show that, when H0 is true, then the p‐value has a Uniform (0,1) distribution. 

Proof:  

   First, according to C&B Theorem 2.1.10, the cdf of a continuous r.v. follows Uniform(0, 1). 

 



36-705 Intermediate Statistics HW8

Problem 1 (C & B 9.1)

Solution:

Problem 2 (C & B 9.4(a))

Solution: (a).

1



Problem 3 (C & B 9.33(a))

Solution:

Problem 4

Solution: The likelihood function for θ is

L(θ;X1, . . . , Xn) =
1

θn
IX(n)≤θ, X(n) = max{X1, . . . , Xn}.

So, the MLE is θ̂ = X(n).
The likelihood ratio for data is

L(θ)

L(θ̂)
=
θ̂n

θn
IX(n)≤θ

IX(n)≤θ̂
=
Xn

(n)

θn
IX(n)≤θ.

Hence, using LRT, we accept the H0 when

L(θ)

L(θ̂)
=
Xn

(n)

θn
IX(n)≤θ > C.

Choose a proper C to make sure that the test has size α. For Uniform distribution, the
size could be calculated as

Pθ(
Xn

(n)

θn
IX(n)≤θ ≤ C) = Pθ(X(n) ≤ C1/nθ) =

(C1/nθ)n

θn
= C.

2



So, take C = α to make sure that the LRT is with size α.
In this sense, the acceptance region is

A(θ) = {X1, · · · , Xn : θ ≥ X(n) > α1/nθ},

and the corresponding 1− α confidence interval is (X(n),
X(n)

α1/n ).

Problem 5

Solution: Given x, say that x ∈ Bj, then the estimator is p̂(x) =
θ̂j
h

= 1
nh

∑n
i=1 I(Xi ∈ Bj).

For any Xi, the distribution of I(Xi ∈ Bj) is Bernoulli Distribution with parameter p =
P (X ∈ Bj) =

∫
Bj
p(t)dt. As X1, · · · , Xn are i.i.d samples, so I(X1 ∈ Bj), · · · , I(Xn ∈ Bj)

are also i.i.d samples. Hence, we have the expectation and variance for θ̂j as

E[θ̂j] =

∫

Bj

p(t)dt,

and

var(θ̂j) =
1

n

∫

Bj

p(t)dt(1−
∫

Bj

p(t)dt).

Hence, the bias and variance for the estimator is

bias(p̂(x)) =
1

h

∫

Bj

p(t)dt− p(x),

and

var(p̂(x)) =
1

nh2

∫

Bj

p(t)dt(1−
∫

Bj

p(t)dt)

So, the MSE for this single point is

MSE(x) = b2 + v = (
1

h

∫

Bj

p(t)dt− p(x))2 +
1

nh2

∫

Bj

p(t)dt(1−
∫

Bj

p(t)dt).

Now try to estimate the MSE term by term.
Taylor expansion shows that

∫

Bj

p(t)dt = hp(x)+p′(x)

∫

Bj

(t−x)dt+

∫

Bj

(t− x)2

2
p′′(x̃)dx = hp(x)+hp′(x)(h(j−1

2
)−x)+O(h3).

In the bin Bj, the integration over bias square is

∫

Bj

(
1

h

∫

Bj

p(t)dt− p(x))2dx =

∫

Bj

p′(x)2(h(j − 1

2
)− x)2dx+O(h3),

3



and by the mean value theorem,

∫

Bj

(
1

h

∫

Bj

p(t)dt− p(x))2dx ≈ p′(x̃j)
2

∫

Bj

(h(j − 1

2
)− x)2dx = p′(x̃j)

2h
3

12
.

Hence, we have

∫ 1

0

bias(x)2dx =
m∑

j=1

∫

Bj

bias(x)2dx ≈
m∑

j=1

p′(x̃j)
2h

3

12
≈
∫
p′(xj)

2dx
h2

12
.

For the variance part, in the bin Bj, it does not change, so the integration is

∫

Bj

vdt = h(
1

nh2

∫

Bj

p(t)dt(1−
∫

Bj

p(t)dt)) =
1

nh
(

∫

Bj

p(t)dt− (

∫

Bj

p(t)dt)2),

and on [0, 1] interval, the variance is

∫ 1

0

vdt =
m∑

j=1

1

nh
(

∫

Bj

p(t)dt− (

∫

Bj

p(t)dt)2) =
1

nh
− 1

nh

m∑

j=1

(

∫

Bj

p(t)dt)2.

With mean value theorem, we have that
∫
Bj
p(t)dt = p(x̃j)h, so it becomes

∫ 1

0

vdt =
1

nh
− 1

nh

m∑

j=1

h2p(x̃j)
2 ≈ 1

nh
(1−

∫
p2(x)dx).

So, the approximation of MSE on the density function is

MSE =

∫
b2 + v ≈

∫
p′(xj)

2dx
h2

12
+

1

nh
(1−

∫
p2(x)dx).

If we take C1 =
∫
p′(xj)2dx/12, and C2 = (1−

∫
p2(x)dx), then the approximate MSE is

MSE ≈ C1h
2 + C2

1

nh
,

so the best h should be O(n−1/3), and the corresponding convergence rate is n−2/3.

4



2011 Fall 10­705/36­705 Test 3 Solutions 

(1) Let  ( ) ( )1, , ~ , 0,1nX X Bernoulli θ θ ∈"  

(a) Find MLE θ̂ , score function, and Fisher information. 

Solution: 

( ) ( )

( ) ( )

( ) ( )

1

2

2

; 1

1ˆ

log
1

log
1

ii
n XXn

n

i
i

i

n

L X

X
n

X nLS

L nI Eθ

θ θ θ

θ

θθ
θ θ θ

θ
θ θ θ

−ΣΣ

=

= −

=

Σ −∂
= =

∂ −

⎛ ⎞∂
= − =⎜ ⎟∂ −⎝ ⎠

∑
 

(b) Find the limiting distribution of 
ˆˆ eθτ = . 

Solution: 

According to Thm 11 Lecture 9: 

( ) ( )( ) ( )
( ) ( )( )

( ) ( )

2
2

1

2

| ' |ˆ 0, 0, 1

1ˆ ,

d

d

n e
I

e
e

n

θ

θ
θ

τ θ
τ θ τ θ θ θ

θ

θ θ
τ θ

⎛ ⎞
− → = −⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞−

⇒ → ⎜ ⎟
⎝ ⎠

N N

N

 

(c) Find the Wald test for  0 1: 1/ 2, : 1/ 2H Hθ θ= ≠ . 

Solution: 

( ) ( )1ˆse
n

θ θ
θ

−
=  

Therefore the Wald test is: reject when  /2

ˆ 1/ 2
1/ 4

z
n α

θ −
> . 

(2) Let  ( )1, , ~ ,1nX X θ" N . 



(a) Find the level‐α Neyman‐Pearson test for  0 1: 1, : 2H Hθ θ= = . 

Solution: 

The Neyman‐Pearson test rejects when  ( )nT X kα> . 

( ) ( )
( )

( )

( )
( )( )

2

1

20

1exp 2
2 exp 3 / 2
1exp 1
2

i
in

i
i

X
L

T x n X
L X

θ
θ

⎛ ⎞
− −⎜ ⎟
⎝ ⎠= = = −
⎛ ⎞− −⎜ ⎟
⎝ ⎠

∑

∑
 

To get  kα  

( )( ) ( )( )( ) ( )0 0 0exp 3 / 2P T x k P n X k P X cα αα α α> = ⇔ − > = ⇔ > = . 

Since  ( )~ 1,1/X nN , we know  0 1 zP X
n
α α⎛ ⎞> + =⎜ ⎟

⎝ ⎠
. Therefore the test is: reject when 

1 zX
n
α> + . 

(b) In what sense is Neyman‐Pearson optimal: 

Solution: 

Neyman‐Pearson is optimal because it is UMP: among all the level‐α tests, Neyman‐Pearson 

has the largest power function for all  1θ ∈Θ  i.e. has minimum type II error. 

(c) Find the LRT of  0 1: 1, : 1H Hθ θ= ≠ . 

Solution: 

( ) ( )
( )

( )

( )

( )

( )

( ) ( ) ( )

0

2 2
0

0

2 2

2 22

ˆ ˆ1,

1 1exp exp 1ˆ 2 2
ˆ 1 1ˆexp exp

2 2

1exp 1 exp 1
2 2

MLE

i i
i in

i i
i i

i i
i

X

X XL
X

L X X X

nX X X X

θ θ

θθ
λ

θ θ

= =

⎛ ⎞ ⎛ ⎞− − − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= = =
⎛ ⎞ ⎛ ⎞− − − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞= − − − − = − −⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

∑ ∑

∑ ∑

∑

 



We know under H0  ( ) ( ) ( )2 2
11 ~ 0,1 1 ~n X n X χ− ⇒ −N . Therefore the LRT is: reject 

H0 when  ( )2 2
1,1n X αχ− >  (or equivalently  /21n X zα− > ). 

(3) Let  ( )1, , ~ 0, , 0nX X Uniform θ θ >"  

(a) Find the likelihood and MLE. 

Solution: 

( ) ( )( )
( )

1 1

ˆ max

i nn n
i

i in

L I X I X

X X

θ θ
θ θ

θ

= ≤ = ≤

= =

∏
 

(b) Find the form of LRT for  0 1: 1, : 1H Hθ θ= ≠  

Solution: 

The LRT rejects H0 if  ( )nX cλ ≤ . 

( ) ( )
( )

( )( )

( )
( ) ( )( ) ( ) ( )( )0̂ 1

11ˆ
nn n

n n

n nn
n

I XL
X X I X

L I X X
X

θ
λ

θ

≤
= = = ≤

≤
 

Therefore, if  ( ) 1nX > , always reject H0. Otherwise reject H0 if  ( )
n
nX  is smaller than some 

value. 

(c) Find the form of likelihood ratio confidence interval. 

Solution: 

( )
( )

( )
( )

( )( )

( )

( )
( )( )

:
ˆ

1

1ˆ

n
nn n

nn

n
n

L
C c

L

I X XL
I X

L
X

θ
θ

θ

θθ θ θ
θθ

⎧ ⎫⎪ ⎪= ≥⎨ ⎬
⎪ ⎪⎩ ⎭

≤
= = ≤

 



When  ( )nXθ < , this ratio is always zero. When  ( )nXθ ≥ , this ratio is monotonically 

decreasing with θ . Therefore, C should have the form  ( ) ,nX U⎡ ⎤
⎣ ⎦ . 

(4) Let  ( )1, , ~ ;nX X p x θ"  

(a) Let C(Xn) be a 1‐α confidence interval for θ. Consider testing  0 0 1 0: , :H Hθ θ θ θ= ≠ . 

Suppose we reject H0 if  ( )0
nC Xθ ∈ . Show that this defines a level α test for H0. 

Solution: 

( )( )
( )( )
( )( )

( )( )

inf 1

1 inf

sup 1

sup

n

n

n

n

P C X

P C X

P C X

P C X

θ θ

θ θ

θ θ

θ θ

θ α

θ α

θ α

θ α

∈ ≥ −

⇔ − ∈ ≤

⇔ − ∈ ≤

⇔ ∉ ≤

 

which is the definition of a level‐α test. 

(b) ( )1, , ~ 0, , 0nX X Uniform θ θ >" . Let  ( ) ( )( )1/, / n
n n nC X X α= . Show that Cn is a 1‐α CI 

for θ. 

Solution: 

( ) ( ) ( )( ) ( )( ) ( )( )
( )( )

1/ 1/ 1/

1/ 1/
1

For ,

/ 1

11 1 1

n n n
n n n n n

n
nn n

P C P X X P X P X

P X

θ θ θ θ

θ

θ

θ θ α θα θα

θα θα α
θ

∀

∈ = ≤ ≤ = ≤ = − ≥

⎛ ⎞= − ≥ = − = −⎜ ⎟
⎝ ⎠

. 

(c) Use (a) and (b) to define a level α test of  0 1: 1, : 1.H Hθ θ= ≠  Find its power function. 

Solution: 

The test is: reject H0 if  ( ) ( ) ( ) ( )
1/ 1/1 , / 1, ,n n

n n n nX X X or Xα α⎡ ⎤∉ ⇔ > <⎣ ⎦ . 



( ) ( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( )

( )( ) ( )( )

1/ 1/

1/

1/
1 1

1/

1/

1 1

1 1

1 1

1

1

11 1

n n
n n n n

n
n n

nn n

n

n
n

n

P X X P X P X

P X P X

P X P X

θ θ θ

θ θ

θ θ

β θ α α

α

α

θ α
α α θ
θ
α θ
θ

= > < = > + <

= − < + <

= − < + <

⎧
⎪ ≤
⎪
⎪= < ≤⎨
⎪

−⎪ + <⎪⎩

∪

 



36705 Intermediate Statistics Homework 9 Solutions

Problem 1

a).

R(h) = E(L(h)) = E
∫

(p̂h(x))2dx− 2E
∫
p̂h(x)p(x)dx+

∫
(p(x))2dx

Since the last term of the rhs has nothing to do with “h”, differentiate R(h) with
respective to h, d

∫
(p(x))2/dh = 0. Then,

min
h
R(h) = min

h
E(L(h)) = min

h

(
E
∫

(p̂h(x))2dx− 2E
∫
p̂h(x)p(x)dx

)
= min

h
R̃(h)

b).

ER̂(h) = E
∫

(p̂h(x))2dx− 2

n

n∑

i=1

E(p̂h(Yi))

= EX

∫
(p̂h(x))2dx− 2EX,Y (p̂h(Y1)) (1)

= EX

∫
(p̂h(x))2dx− 2EX

∫
(p̂h(y)p(y)dy) (2)

The second expectation in (1) is with respect both X’s and Y’s, while the second expec-
tation in (2) is with respect to X’s. So with prove that ER̂(h) = R̃(h) = E

∫
(p̂h(x))2dx−

2E
∫
p̂h(x)p(x)dx.

Problem 2

Kernel density estimator is defined as

p̂h(x) =
1

n

n∑

i=1

1

h
K

(
Xi − x
h

)

1



Let Yi = 1
hK

(
Xi−x

h

)
. Since kernel K is a symmetric density with expectation 0. Then

a < Yi < b with a = min(K(Xi−x
h ))/h and b = max(K(Xi−x

h ))/h. We can apply Hoeffding
inequality that

P (|p̂h(x)− ph(x)| > ε) = P (| 1
n

∑

i=1

Yi − E(Y )| > ε) ≤ 2e
−2nε2

(b−a)2

Problem 3

E(θ̂∗|X1, ..., Xn) = n−1E[Y ∼ Binomial(n,X)] = n−1nX = X

E(θ̂∗) = E(E(θ̂∗|X1, ..., Xn)) = EX = θ

Var(θ̂∗|X1, ..., Xn) = n−2nX(1−X) = n−1X(1−X)

Var(θ̂∗) = Var(E(θ̂∗|X1, ..., Xn)) + E(Var(θ̂∗|X1, ..., Xn)) =

= Var(X) + E(n−1X(1−X)) =

= n−1θ(1− θ) + n−1(EX − EX2
) =

= n−1(θ(1− θ) + θ − n−1θ(1− θ)− θ2) =

= n−12θ(1− θ)− n−2θ(1− θ) =

= θ(1− θ)
(

2n− 1

n2

)

Problem 4

V(θ̂∗|X1, . . . , Xn)

Var(θ̂n)
=
X̄(1− X̄)

p(1− p)

X̄
P→ p by law of large number

Then,

X̄(1− X̄)
P→ p(1− p) by Theorem 10 in Lecture 4

So

X̄(1− X̄)

p(1− p)
P→ 1

2
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Problem 3

Solution:
(a) Say that Xj = Zj + θj, then Xj ∼ N(θj, 1). The moment generating function for

Xj ∼ N(θ, 1) is MX(t) = eθt+t
2/2. So, we have the moments for X as

E[X] = θ, E[X2] = 1 + θ2, E[X3] = 3θ + θ3, E[X4] = 3 + 6θ2 + θ4,

and
V ar(X2) = E[X4]− (E[X2])2 = 3 + 12θ2 + θ4 − (1 + θ2)2 = 2 + 4θ2.

Because Xjs are independent, so we have

E[V ] =
k∑

j=1

E[X2
j ] =

k∑

j=1

1 + θ2j = k + λ,

V ar[V ] =
k∑

j=1

V ar[X2
j ] =

k∑

j=1

2 + 4θ2j = 2(k + 2λ).

(b) The posterior distribution of µ is

f(µ) = f(y|µ)f(µ) = Πn
i=1

1√
2π
e−

(yi−µi)2
2 .

So, the posterior distribution of µ is N(y, In).
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(c) In this case, the distribution of τ =
∑

i µ
2
i is χ2

n(λ), where λ =
∑

i y
2
i .

(d) According to the result in (a), the posterior mean of τ is τ̂ = n+
∑

i y
2
i .

(e) Let W =
∑

i y
2
i and thus τ̂ = n+W . By definition, W ∼ χ2

n(
∑

i µ
2
i ). Therefore

bias(τ̂) = E(τ̂)−
∑

i

µ2
i = E(n+W )−

∑

i

µ2
i

= n+ (n+
∑

i

µ2
i )−

∑

i

µ2
i

= 2n

V ar(τ̂) = V ar(n+W ) = V ar(W )

= 2n+ 4
∑

i

µ2
i

(f) According to the hint, W ≈ N (E(W ), V ar(W )) = N (n+
∑

i µ
2
i , 2n+ 4

∑
i µ

2
i ).

Now consider the probability P (|τ̂ − τ | > ε) for an arbitrarily small ε. This probability will
never approach 1 since τ̂ − τ = W +n−∑i µ

2
i ≈ N (2n, 2n+ 4

∑
i µ

2
i ). In other words, the

density of τ̂ − τ will never concentrate around zero. Therefore, τ̂ is not consistent.
(g) From (c), τ =

∑
i µ

2
i is χ2

n(λ), then the 1 − α confidence interval for τ is Cn =
[χ2
n,α(
∑

i y
2
i ),+∞).

(h) From (e), bias(τ̂) = 2n, then E(τ̂ − 2n) = 0. τ̃ = τ̂ − 2n = W − n is an unbiased
estimator. V ar(τ̃) = 2n+ 4

∑
i µ

2
i . As n→∞, V ar(τ̃) 9 0, so τ̃ is not consistent either.

(i) From (e) we have W ∼ χ2
n(
∑

i µ
2
i ) = χ2

n(τ). Suppose we want to test H0 : τ = τ0
vs. H1 : τ 6= τ0, then the rejection region of a level α test is R = {W : W ≤ χ2

n,α(τ0)}.
By inverting this test, we have a size 1 − α confidence interval An = {τ : W ≥ χ2

n,α(τ)}.
The interval in (g) is actually Bayesian credible interval where the parameter τ is random
and the interval is determined by the posterior distribution of τ . The interval in (i) is the
frequentist confidence interval which we assume it is fixed and the interval is determined
from the distribution of the estimator of τ .
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Practice Final Exam

1. Let X1, . . . , Xn be iid from a distribution with mean µ and variance σ2. Let

S2
n =

1

n− 1

n∑

i=1

(Xi −Xn)2

where Xn = n−1
∑n

i=1 Xi. Prove that Sn
P→ σ.

2. Let θ > 0. Let Sθ denote the square in the plane whose four corners are (θ, θ), (−θ, θ), (−θ,−θ)
and (θ,−θ). Let X1, . . . , Xn be iid data from a uniform distribution over Sθ. (Note
that each Xi ∈ R2.)

● (θ,θ)

● (θ, − θ)●(− θ , − θ)

●( − θ , θ )

(a) Find a minimal sufficient statistic.

(b) Find the maximum likelihood estimate (mle).

(c) Show that the mle is consistent.

1



3. Let X1, . . . , Xn ∼ Poisson(λ) and let Y1, . . . , Ym ∼ Poisson(γ). Assume that the two
samples are independent.

(a) Find the Wald test for testing

H0 : λ = γ versus H1 : λ 6= γ.

(b) Find the likelihood ratio test for testing

H0 : λ = γ versus H1 : λ 6= γ.

What is the (approximate) level α critical value?

(c) Find an approximate 1− α confidence interval for λ− γ.

(d) Find the BIC criterion for deciding between the two models:

Model I: ν = γ.

Model II: ν 6= γ.

4. Let X1, . . . , Xn ∼ Unif(0, θ).

(a) Let θ̂ = aXn where a > 0 is a constant. Find the risk of θ̂ under squared error loss.

(b) Find the posterior mean using the (improper) prior π(θ) ∝ 1/θ.

(c) Suppose now that 0 ≤ θ ≤ B where B > 0 is given. Hence the parameter space is

Θ = [0, B]. Let θ̂ be the Bayes estimator (assuming squared error loss) assuming that
the prior puts all its mass at θ = 0. In other words, the prior is a point mass at θ = 0.
Prove that the posterior mean is not minimax. (Hint: You need only find some other

estimator θ̃ such that supθ∈ΘR(θ, θ̃) < supθ∈Θ R(θ, θ̂).

5. Suppose that (Y,X) are random variables where Y ∈ {0, 1} and X ∈ R. Suppose that

X|Y = 0 ∼ Unif(−5, 5)

and that
X|Y = 1 ∼ Unif(−1, 1).

Further suppose that P(Y = 0) = P(Y = 1) = 1/2.

(a) Find m(x) = P(Y = 1|X = x).

(b) Let A = {(a, b) : a, b ∈ R , a ≤ b}. Find the VC dimension of A.

2



(c) Let H = {hA : A ∈ A} where hA(x) = 1 if x ∈ A and hA(x) = 0 if x /∈ A. Show
that the Bayes rule h∗ is in H.

(d) Let ĥ be the empirical risk minimizer based on data (X1, Y1), . . . , (Xn, Yn). Show

that R(ĥ)−R(h∗) ≤ ε with high probability.

6. Let X1, X2 be iid Uniform(0, 1). Find the density of Y = X1 +X2.

7. Let X1, . . . , Xn be iid data from a uniform distribution over the disc of radius θ in R2.
Thus, Xi ∈ R2 and

f(x; θ) =

{
1
πθ2

if ||x|| ≤ θ
0 otherwise

where ||x|| =
√
x2

1 + x2
2.

(a) Find a minimal sufficient statistic.

(b) Find the maximum likelihood estimate (mle).

(c) Show that the mle is consistent.

8. Let X ∼ Binomial(n, p) and Y ∼ Binomial(m, q). Assume that X and Y are indepen-
dent.

(a) Find the Wald test for testing

H0 : p = q versus H1 : p 6= q.

(b) Find the likelihood ratio test for testing

H0 : p = q versus H1 : p 6= q.

(c) Find an approximate 1− α confidence interval for θ = p− q.

9. Let X ∼ f(x; θ) where θ ∈ Θ. Let L(θ̂, θ) be a loss fuctions.

(a) Define the following terms: risk function, minimax estimator, Bayes estimator.

(b) Show that a Bayes estimator with constant risk is minimax.
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10. Let X1, . . . , Xn ∼ N(θ, 1). Let π be a N(0, 1) prior:

π(θ) =
1√
2π
e−θ

2/2.

(a) Find the posterior distribution for θ.

(b) Find the posterior mean θ.

(c) Find the mean squared error R(θ, θ) = Eθ(θ − θ)2.

11. Let X1, . . . , Xn ∼ Poisson(λ).

(a) Find the mle λ̂.

(b) Find the score function.

(c) Find the Fisher informtion.

(d) Find the limiting distribution of the mle.

(e) Show that λ̂ is consistent.

(f) Let ψ = eλ. Find the limiting distribution of ψ̂ = e
bλ.

(g) Show that ψ̂ is a consistent estimate of ψ.

12. Let X1, . . . , Xn be a sample from f(x; θ) = (1/2)(1 + θx) where −1 < x < 1 and
−1 < θ < 1.

(a) Find the mle θ̂. Show that it is consistent.

(b) Find the method of moments estimator and show that it is consistent.
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